Nuprl Lemma : swap_eval_3

i,j,k:ℤ.  ((¬(k i ∈ ℤ))  (k j ∈ ℤ))  ((swap(i;j) k) k ∈ ℤ))


Proof




Definitions occuring in Statement :  swap: swap(i;j) all: x:A. B[x] not: ¬A implies:  Q apply: a int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q swap: swap(i;j) member: t ∈ T uall: [x:A]. B[x] bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a not: ¬A false: False bfalse: ff exists: x:A. B[x] subtype_rel: A ⊆B or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb ifthenelse: if then else fi  assert: b prop:
Lemmas referenced :  eq_int_wf eqtt_to_assert assert_of_eq_int eqff_to_assert int_subtype_base bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot neg_assert_of_eq_int not_wf equal-wf-base istype-int
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut sqequalRule introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis inhabitedIsType unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination independent_functionElimination voidElimination dependent_pairFormation_alt equalityIsType2 baseApply closedConclusion baseClosed applyEquality promote_hyp dependent_functionElimination instantiate cumulativity because_Cache equalityIsType1 universeIsType intEquality

Latex:
\mforall{}i,j,k:\mBbbZ{}.    ((\mneg{}(k  =  i))  {}\mRightarrow{}  (\mneg{}(k  =  j))  {}\mRightarrow{}  ((swap(i;j)  k)  =  k))



Date html generated: 2019_10_16-PM-00_59_18
Last ObjectModification: 2018_10_08-AM-09_26_39

Theory : perms_1


Home Index