Nuprl Lemma : swap_eval_3
∀i,j,k:ℤ.  ((¬(k = i ∈ ℤ)) 
⇒ (¬(k = j ∈ ℤ)) 
⇒ ((swap(i;j) k) = k ∈ ℤ))
Proof
Definitions occuring in Statement : 
swap: swap(i;j)
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
apply: f a
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
swap: swap(i;j)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
false: False
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
prop: ℙ
Lemmas referenced : 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
int_subtype_base, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
not_wf, 
equal-wf-base, 
istype-int
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
sqequalRule, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
inhabitedIsType, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_isectElimination, 
independent_functionElimination, 
voidElimination, 
dependent_pairFormation_alt, 
equalityIsType2, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
because_Cache, 
equalityIsType1, 
universeIsType, 
intEquality
Latex:
\mforall{}i,j,k:\mBbbZ{}.    ((\mneg{}(k  =  i))  {}\mRightarrow{}  (\mneg{}(k  =  j))  {}\mRightarrow{}  ((swap(i;j)  k)  =  k))
Date html generated:
2019_10_16-PM-00_59_18
Last ObjectModification:
2018_10_08-AM-09_26_39
Theory : perms_1
Home
Index