Nuprl Lemma : tswap_eval_1
∀n:ℕ. ∀i,j,k:ℕn.  ((k = i ∈ ℕn) 
⇒ ((swap{n}(i;j) k) = j ∈ ℕn))
Proof
Definitions occuring in Statement : 
tswap: swap{n}(i;j)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
apply: f a
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
tswap: swap{n}(i;j)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
guard: {T}
, 
nat: ℕ
, 
prop: ℙ
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
top: Top
Lemmas referenced : 
int_formula_prop_eq_lemma, 
intformeq_wf, 
decidable__equal_int, 
swap_eval_1, 
nat_wf, 
int_seg_wf, 
equal_wf, 
int_formula_prop_less_lemma, 
intformless_wf, 
decidable__lt, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
nat_properties, 
lelt_wf, 
int_seg_properties
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
cut, 
dependent_set_memberEquality, 
hypothesis, 
equalitySymmetry, 
independent_pairFormation, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesisEquality, 
applyEquality, 
lambdaEquality, 
setEquality, 
intEquality, 
productElimination, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
because_Cache, 
independent_functionElimination
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}i,j,k:\mBbbN{}n.    ((k  =  i)  {}\mRightarrow{}  ((swap\{n\}(i;j)  k)  =  j))
Date html generated:
2016_05_16-AM-07_29_49
Last ObjectModification:
2016_01_16-PM-10_06_10
Theory : perms_1
Home
Index