Nuprl Lemma : swap_eval_1
∀i,j,k:ℤ. ((k = i ∈ ℤ)
⇒ ((swap(i;j) k) = j ∈ ℤ))
Proof
Definitions occuring in Statement :
swap: swap(i;j)
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
apply: f a
,
int: ℤ
,
equal: s = t ∈ T
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
swap: swap(i;j)
,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
uimplies: b supposing a
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
exists: ∃x:A. B[x]
,
subtype_rel: A ⊆r B
,
or: P ∨ Q
,
sq_type: SQType(T)
,
guard: {T}
,
bnot: ¬bb
,
assert: ↑b
,
false: False
,
nequal: a ≠ b ∈ T
,
not: ¬A
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
top: Top
,
prop: ℙ
Lemmas referenced :
eq_int_wf,
eqtt_to_assert,
assert_of_eq_int,
eqff_to_assert,
int_subtype_base,
bool_cases_sqequal,
subtype_base_sq,
bool_wf,
bool_subtype_base,
assert-bnot,
neg_assert_of_eq_int,
full-omega-unsat,
intformand_wf,
intformeq_wf,
itermVar_wf,
intformnot_wf,
istype-int,
int_formula_prop_and_lemma,
istype-void,
int_formula_prop_eq_lemma,
int_term_value_var_lemma,
int_formula_prop_not_lemma,
int_formula_prop_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation_alt,
cut,
sqequalRule,
introduction,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
hypothesis,
inhabitedIsType,
unionElimination,
equalityElimination,
equalityTransitivity,
equalitySymmetry,
productElimination,
independent_isectElimination,
dependent_pairFormation_alt,
equalityIsType2,
baseApply,
closedConclusion,
baseClosed,
applyEquality,
promote_hyp,
dependent_functionElimination,
instantiate,
cumulativity,
independent_functionElimination,
because_Cache,
voidElimination,
natural_numberEquality,
approximateComputation,
lambdaEquality_alt,
int_eqEquality,
isect_memberEquality_alt,
independent_pairFormation,
universeIsType,
equalityIsType1,
equalityIsType4
Latex:
\mforall{}i,j,k:\mBbbZ{}. ((k = i) {}\mRightarrow{} ((swap(i;j) k) = j))
Date html generated:
2019_10_16-PM-00_59_15
Last ObjectModification:
2018_10_08-AM-09_26_45
Theory : perms_1
Home
Index