Nuprl Lemma : mon_reduce_eq_itop
∀g:IMonoid. ∀as:|g| List.  ((Π as) = (Π 0 ≤ i < ||as||. as[i]) ∈ |g|)
Proof
Definitions occuring in Statement : 
mon_reduce: mon_reduce, 
select: L[n]
, 
length: ||as||
, 
list: T List
, 
all: ∀x:A. B[x]
, 
natural_number: $n
, 
equal: s = t ∈ T
, 
mon_itop: Π lb ≤ i < ub. E[i]
, 
imon: IMonoid
, 
grp_car: |g|
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
imon: IMonoid
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
or: P ∨ Q
, 
cons: [a / b]
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
colength: colength(L)
, 
nil: []
, 
it: ⋅
, 
guard: {T}
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_type: SQType(T)
, 
less_than: a < b
, 
squash: ↓T
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
decidable: Dec(P)
, 
subtype_rel: A ⊆r B
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
true: True
, 
mon_reduce: mon_reduce, 
select: L[n]
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
infix_ap: x f y
, 
nat_plus: ℕ+
, 
uiff: uiff(P;Q)
, 
subtract: n - m
, 
cand: A c∧ B
Lemmas referenced : 
list_wf, 
grp_car_wf, 
imon_wf, 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
list-cases, 
product_subtype_list, 
colength-cons-not-zero, 
colength_wf_list, 
istype-false, 
le_wf, 
subtract-1-ge-0, 
subtype_base_sq, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
set_subtype_base, 
int_subtype_base, 
spread_cons_lemma, 
decidable__equal_int, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
itermAdd_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
int_term_value_add_lemma, 
decidable__le, 
nat_wf, 
grp_id_wf, 
int_seg_properties, 
int_seg_wf, 
reduce_nil_lemma, 
length_of_nil_lemma, 
stuck-spread, 
istype-base, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
mon_itop_unroll_base, 
subtype_rel_self, 
iff_weakening_equal, 
reduce_cons_lemma, 
length_of_cons_lemma, 
grp_op_wf, 
mon_reduce_wf, 
mon_itop_unroll_lo, 
length_wf, 
add_nat_plus, 
length_wf_nat, 
nat_plus_properties, 
decidable__lt, 
add-is-int-iff, 
false_wf, 
select_wf, 
cons_wf, 
non_neg_length, 
mon_itop_wf, 
select_cons_tl, 
mon_itop_shift, 
add-associates, 
zero-add, 
add-commutes, 
add-swap, 
minus-minus
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
hypothesis, 
universeIsType, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
dependent_functionElimination, 
isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
independent_pairFormation, 
axiomEquality, 
functionIsTypeImplies, 
inhabitedIsType, 
because_Cache, 
unionElimination, 
promote_hyp, 
hypothesis_subsumption, 
productElimination, 
equalityIsType1, 
dependent_set_memberEquality_alt, 
instantiate, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
imageElimination, 
equalityIsType4, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
intEquality, 
universeEquality, 
imageMemberEquality, 
addEquality, 
pointwiseFunctionality, 
functionIsType, 
minusEquality, 
hyp_replacement, 
productEquality
Latex:
\mforall{}g:IMonoid.  \mforall{}as:|g|  List.    ((\mPi{}  as)  =  (\mPi{}  0  \mleq{}  i  <  ||as||.  as[i]))
Date html generated:
2019_10_16-PM-01_02_17
Last ObjectModification:
2018_10_08-AM-11_46_15
Theory : list_2
Home
Index