Nuprl Lemma : mon_reduce_eq_itop

g:IMonoid. ∀as:|g| List.  ((Π as) (Π 0 ≤ i < ||as||. as[i]) ∈ |g|)


Proof




Definitions occuring in Statement :  mon_reduce: mon_reduce select: L[n] length: ||as|| list: List all: x:A. B[x] natural_number: $n equal: t ∈ T mon_itop: Π lb ≤ i < ub. E[i] imon: IMonoid grp_car: |g|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] imon: IMonoid nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q prop: or: P ∨ Q cons: [a b] le: A ≤ B less_than': less_than'(a;b) colength: colength(L) nil: [] it: guard: {T} so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) subtype_rel: A ⊆B int_seg: {i..j-} lelt: i ≤ j < k true: True mon_reduce: mon_reduce select: L[n] iff: ⇐⇒ Q rev_implies:  Q infix_ap: y nat_plus: + uiff: uiff(P;Q) subtract: m cand: c∧ B
Lemmas referenced :  list_wf grp_car_wf imon_wf nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf list-cases product_subtype_list colength-cons-not-zero colength_wf_list istype-false le_wf subtract-1-ge-0 subtype_base_sq intformeq_wf int_formula_prop_eq_lemma set_subtype_base int_subtype_base spread_cons_lemma decidable__equal_int subtract_wf intformnot_wf itermSubtract_wf itermAdd_wf int_formula_prop_not_lemma int_term_value_subtract_lemma int_term_value_add_lemma decidable__le nat_wf grp_id_wf int_seg_properties int_seg_wf reduce_nil_lemma length_of_nil_lemma stuck-spread istype-base equal_wf squash_wf true_wf istype-universe mon_itop_unroll_base subtype_rel_self iff_weakening_equal reduce_cons_lemma length_of_cons_lemma grp_op_wf mon_reduce_wf mon_itop_unroll_lo length_wf add_nat_plus length_wf_nat nat_plus_properties decidable__lt add-is-int-iff false_wf select_wf cons_wf non_neg_length mon_itop_wf select_cons_tl mon_itop_shift add-associates zero-add add-commutes add-swap minus-minus
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut hypothesis universeIsType introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality dependent_functionElimination isect_memberEquality_alt voidElimination sqequalRule independent_pairFormation axiomEquality functionIsTypeImplies inhabitedIsType because_Cache unionElimination promote_hyp hypothesis_subsumption productElimination equalityIsType1 dependent_set_memberEquality_alt instantiate equalityTransitivity equalitySymmetry applyLambdaEquality imageElimination equalityIsType4 baseApply closedConclusion baseClosed applyEquality intEquality universeEquality imageMemberEquality addEquality pointwiseFunctionality functionIsType minusEquality hyp_replacement productEquality

Latex:
\mforall{}g:IMonoid.  \mforall{}as:|g|  List.    ((\mPi{}  as)  =  (\mPi{}  0  \mleq{}  i  <  ||as||.  as[i]))



Date html generated: 2019_10_16-PM-01_02_17
Last ObjectModification: 2018_10_08-AM-11_46_15

Theory : list_2


Home Index