Nuprl Lemma : nat_plus_properties
∀[i:ℕ+]. 0 < i
Proof
Definitions occuring in Statement : 
nat_plus: ℕ+
, 
less_than: a < b
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
nat_plus: ℕ+
, 
member: t ∈ T
Lemmas referenced : 
nat_plus_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
hypothesis, 
lemma_by_obid
Latex:
\mforall{}[i:\mBbbN{}\msupplus{}].  0  <  i
Date html generated:
2016_05_13-PM-03_32_12
Last ObjectModification:
2015_12_26-AM-09_45_21
Theory : arithmetic
Home
Index