Nuprl Lemma : mon_itop_shift

[g:IMonoid]. ∀[a,b:ℤ].
  ∀[E:{a..b-} ⟶ |g|]. ∀[k:ℤ].  ((Π a ≤ j < b. E[j]) (Π k ≤ j < k. E[j k]) ∈ |g|) supposing a ≤ b


Proof




Definitions occuring in Statement :  mon_itop: Π lb ≤ i < ub. E[i] imon: IMonoid grp_car: |g| int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] le: A ≤ B function: x:A ⟶ B[x] subtract: m add: m int: equal: t ∈ T
Definitions unfolded in proof :  mon_itop: Π lb ≤ i < ub. E[i]
Lemmas referenced :  itop_shift
Rules used in proof :  cut lemma_by_obid sqequalHypSubstitution sqequalRule sqequalReflexivity sqequalSubstitution sqequalTransitivity computationStep hypothesis

Latex:
\mforall{}[g:IMonoid].  \mforall{}[a,b:\mBbbZ{}].
    \mforall{}[E:\{a..b\msupminus{}\}  {}\mrightarrow{}  |g|].  \mforall{}[k:\mBbbZ{}].    ((\mPi{}  a  \mleq{}  j  <  b.  E[j])  =  (\mPi{}  a  +  k  \mleq{}  j  <  b  +  k.  E[j  -  k])) 
    supposing  a  \mleq{}  b



Date html generated: 2016_05_15-PM-00_16_06
Last ObjectModification: 2015_12_26-PM-11_39_46

Theory : groups_1


Home Index