Nuprl Lemma : itop_shift

[g:IMonoid]. ∀[a,b:ℤ].
  ∀[E:{a..b-} ⟶ |g|]. ∀[k:ℤ].  (*,e) a ≤ j < b. E[j] = Π(*,e) k ≤ j < k. E[j k] ∈ |g|) supposing a ≤ b


Proof




Definitions occuring in Statement :  itop: Π(op,id) lb ≤ i < ub. E[i] imon: IMonoid grp_id: e grp_op: * grp_car: |g| int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] le: A ≤ B function: x:A ⟶ B[x] subtract: m add: m int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a imon: IMonoid prop: all: x:A. B[x] so_lambda: λ2x.t[x] int_upper: {i...} so_apply: x[s] int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q guard: {T} decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top iff: ⇐⇒ Q rev_implies:  Q squash: T true: True subtype_rel: A ⊆B infix_ap: y subtract: m
Lemmas referenced :  int_seg_wf grp_car_wf le_wf imon_wf int_le_to_int_upper all_wf equal_wf itop_wf grp_op_wf grp_id_wf subtract_wf int_seg_properties int_upper_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermVar_wf itermSubtract_wf itermAdd_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_term_value_subtract_lemma int_term_value_add_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma lelt_wf int_upper_wf int_upper_ind itermConstant_wf int_term_value_constant_lemma squash_wf true_wf itop_unroll_base iff_weakening_equal itop_unroll_hi decidable__equal_int intformeq_wf int_formula_prop_eq_lemma infix_ap_wf add-associates add-swap add-commutes minus-one-mul add-mul-special zero-mul add-zero
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis intEquality sqequalRule sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality axiomEquality because_Cache functionEquality extract_by_obid setElimination rename equalityTransitivity equalitySymmetry dependent_functionElimination lambdaEquality applyEquality functionExtensionality addEquality dependent_set_memberEquality independent_pairFormation productElimination unionElimination natural_numberEquality independent_isectElimination dependent_pairFormation int_eqEquality voidElimination voidEquality computeAll independent_functionElimination instantiate lambdaFormation imageElimination universeEquality imageMemberEquality baseClosed minusEquality

Latex:
\mforall{}[g:IMonoid].  \mforall{}[a,b:\mBbbZ{}].
    \mforall{}[E:\{a..b\msupminus{}\}  {}\mrightarrow{}  |g|].  \mforall{}[k:\mBbbZ{}].    (\mPi{}(*,e)  a  \mleq{}  j  <  b.  E[j]  =  \mPi{}(*,e)  a  +  k  \mleq{}  j  <  b  +  k.  E[j  -  k]) 
    supposing  a  \mleq{}  b



Date html generated: 2017_10_01-AM-08_15_51
Last ObjectModification: 2017_02_28-PM-02_00_40

Theory : groups_1


Home Index