Nuprl Lemma : int_upper_ind

i:ℤ. ∀[E:{i...} ⟶ ℙ{u}]. (E[i]  (∀k:{i 1...}. (E[k 1]  E[k]))  {∀k:{i...}. E[k]})


Proof




Definitions occuring in Statement :  int_upper: {i...} uall: [x:A]. B[x] prop: guard: {T} so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] subtract: m add: m natural_number: $n int:
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] implies:  Q guard: {T} member: t ∈ T prop: subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] int_upper: {i...} decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top and: P ∧ Q wellfounded: WellFnd{i}(A;x,y.R[x; y])
Lemmas referenced :  all_wf int_upper_wf subtract_wf int_upper_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermVar_wf itermSubtract_wf itermConstant_wf itermAdd_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_term_value_subtract_lemma int_term_value_constant_lemma int_term_value_add_lemma int_formula_prop_wf le_wf int_upper_subtype_int_upper set_wf int_upper_well_founded less_than_wf decidable__equal_int intformeq_wf int_formula_prop_eq_lemma decidable__lt intformless_wf int_formula_prop_less_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation cut thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination addEquality hypothesisEquality natural_numberEquality hypothesis applyEquality lambdaEquality cumulativity universeEquality sqequalRule functionEquality functionExtensionality because_Cache dependent_set_memberEquality setElimination rename dependent_functionElimination unionElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination hyp_replacement equalitySymmetry Error :applyLambdaEquality

Latex:
\mforall{}i:\mBbbZ{}.  \mforall{}[E:\{i...\}  {}\mrightarrow{}  \mBbbP{}\{u\}].  (E[i]  {}\mRightarrow{}  (\mforall{}k:\{i  +  1...\}.  (E[k  -  1]  {}\mRightarrow{}  E[k]))  {}\mRightarrow{}  \{\mforall{}k:\{i...\}.  E[k]\})



Date html generated: 2016_10_21-AM-09_59_13
Last ObjectModification: 2016_07_12-AM-05_13_17

Theory : int_2


Home Index