Nuprl Lemma : int_upper_subtype_int_upper

[n,m:ℤ].  {n...} ⊆{m...} supposing m ≤ n


Proof




Definitions occuring in Statement :  int_upper: {i...} uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] le: A ≤ B int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a int_upper: {i...} so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B prop: all: x:A. B[x] implies:  Q le: A ≤ B and: P ∧ Q guard: {T}
Lemmas referenced :  subtype_rel_sets le_wf le_transitivity
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin intEquality because_Cache lambdaEquality hypothesisEquality hypothesis independent_isectElimination setElimination rename setEquality lambdaFormation productElimination axiomEquality isect_memberEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[n,m:\mBbbZ{}].    \{n...\}  \msubseteq{}r  \{m...\}  supposing  m  \mleq{}  n



Date html generated: 2016_05_13-PM-03_33_03
Last ObjectModification: 2015_12_26-AM-09_44_54

Theory : arithmetic


Home Index