Nuprl Lemma : int_upper_well_founded

n:ℤWellFnd{i}({n...};x,y.x < y)


Proof




Definitions occuring in Statement :  int_upper: {i...} wellfounded: WellFnd{i}(A;x,y.R[x; y]) less_than: a < b all: x:A. B[x] int:
Definitions unfolded in proof :  member: t ∈ T all: x:A. B[x] prop: and: P ∧ Q top: Top false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) implies:  Q not: ¬A uimplies: supposing a or: P ∨ Q decidable: Dec(P) int_upper: {i...} so_apply: x[s1;s2] nat: so_lambda: λ2y.t[x; y] uall: [x:A]. B[x] wellfounded: WellFnd{i}(A;x,y.R[x; y]) so_apply: x[s] subtype_rel: A ⊆B
Lemmas referenced :  nat_well_founded le_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_subtract_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermSubtract_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat decidable__le int_upper_properties subtract_wf int_upper_wf less_than_wf nat_wf inv_image_ind decidable__lt intformless_wf istype-int istype-void int_formula_prop_less_lemma istype-less_than subtype_rel_self istype-int_upper
Rules used in proof :  intEquality lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution extract_by_obid introduction cut independent_pairFormation voidEquality voidElimination isect_memberEquality int_eqEquality dependent_pairFormation independent_functionElimination approximateComputation independent_isectElimination unionElimination natural_numberEquality dependent_set_memberEquality dependent_functionElimination hypothesisEquality rename setElimination lambdaEquality sqequalRule hypothesis thin isectElimination sqequalHypSubstitution Error :isect_memberFormation_alt,  Error :lambdaFormation_alt,  Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  Error :isect_memberEquality_alt,  Error :universeIsType,  because_Cache Error :functionIsType,  applyEquality instantiate universeEquality

Latex:
\mforall{}n:\mBbbZ{}.  WellFnd\{i\}(\{n...\};x,y.x  <  y)



Date html generated: 2019_06_20-PM-01_15_19
Last ObjectModification: 2019_01_29-AM-11_02_15

Theory : int_2


Home Index