Nuprl Lemma : istype-int_upper

[n:ℤ]. istype({n...})


Proof




Definitions occuring in Statement :  int_upper: {i...} istype: istype(T) uall: [x:A]. B[x] int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T
Lemmas referenced :  int_upper_wf istype-int
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  Error :universeIsType,  cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis

Latex:
\mforall{}[n:\mBbbZ{}].  istype(\{n...\})



Date html generated: 2019_06_20-AM-11_23_52
Last ObjectModification: 2018_10_10-PM-01_29_40

Theory : arithmetic


Home Index