Nuprl Lemma : istype-int_upper
∀[n:ℤ]. istype({n...})
Proof
Definitions occuring in Statement : 
int_upper: {i...}
, 
istype: istype(T)
, 
uall: ∀[x:A]. B[x]
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Lemmas referenced : 
int_upper_wf, 
istype-int
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
Error :universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis
Latex:
\mforall{}[n:\mBbbZ{}].  istype(\{n...\})
Date html generated:
2019_06_20-AM-11_23_52
Last ObjectModification:
2018_10_10-PM-01_29_40
Theory : arithmetic
Home
Index