Nuprl Lemma : itop_unroll_hi

[g:IMonoid]. ∀[i,j:ℤ].
  ∀[E:{i..j-} ⟶ |g|]. (*,e) i ≤ k < j. E[k] (*,e) i ≤ k < 1. E[k] E[j 1]) ∈ |g|) supposing i < j


Proof




Definitions occuring in Statement :  itop: Π(op,id) lb ≤ i < ub. E[i] imon: IMonoid grp_id: e grp_op: * grp_car: |g| int_seg: {i..j-} less_than: a < b uimplies: supposing a uall: [x:A]. B[x] infix_ap: y so_apply: x[s] function: x:A ⟶ B[x] subtract: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a imon: IMonoid prop: itop: Π(op,id) lb ≤ i < ub. E[i] ycomb: Y all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt subtype_rel: A ⊆B uiff: uiff(P;Q) and: P ∧ Q ifthenelse: if then else fi  so_lambda: λ2x.t[x] so_apply: x[s] int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top bfalse: ff guard: {T}
Lemmas referenced :  int_seg_wf grp_car_wf less_than_wf imon_wf lt_int_wf bool_wf uiff_transitivity equal-wf-base int_subtype_base assert_wf eqtt_to_assert assert_of_lt_int infix_ap_wf grp_op_wf itop_wf grp_id_wf subtract_wf decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermVar_wf itermSubtract_wf itermConstant_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_subtract_lemma int_term_value_constant_lemma int_formula_prop_wf lelt_wf decidable__le intformle_wf int_formula_prop_le_lemma le_int_wf le_wf bnot_wf eqff_to_assert assert_functionality_wrt_uiff bnot_of_lt_int assert_of_le_int equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis functionEquality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality setElimination rename sqequalRule isect_memberEquality axiomEquality because_Cache equalityTransitivity equalitySymmetry intEquality lambdaFormation unionElimination equalityElimination baseApply closedConclusion baseClosed applyEquality independent_functionElimination productElimination independent_isectElimination natural_numberEquality lambdaEquality functionExtensionality dependent_set_memberEquality independent_pairFormation dependent_functionElimination dependent_pairFormation int_eqEquality voidElimination voidEquality computeAll

Latex:
\mforall{}[g:IMonoid].  \mforall{}[i,j:\mBbbZ{}].
    \mforall{}[E:\{i..j\msupminus{}\}  {}\mrightarrow{}  |g|].  (\mPi{}(*,e)  i  \mleq{}  k  <  j.  E[k]  =  (\mPi{}(*,e)  i  \mleq{}  k  <  j  -  1.  E[k]  *  E[j  -  1])) 
    supposing  i  <  j



Date html generated: 2017_10_01-AM-08_15_37
Last ObjectModification: 2017_02_28-PM-02_00_18

Theory : groups_1


Home Index