Nuprl Lemma : itop_unroll_base
∀[g:IMonoid]. ∀[i,j:ℤ].  ∀[E:{i..j-} ⟶ |g|]. (Π(*,e) i ≤ k < j. E[k] = e ∈ |g|) supposing i = j ∈ ℤ
Proof
Definitions occuring in Statement : 
itop: Π(op,id) lb ≤ i < ub. E[i]
, 
imon: IMonoid
, 
grp_id: e
, 
grp_op: *
, 
grp_car: |g|
, 
int_seg: {i..j-}
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
function: x:A ⟶ B[x]
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
imon: IMonoid
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
itop: Π(op,id) lb ≤ i < ub. E[i]
, 
ycomb: Y
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
ifthenelse: if b then t else f fi 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
top: Top
, 
bfalse: ff
, 
guard: {T}
Lemmas referenced : 
int_seg_wf, 
grp_car_wf, 
equal-wf-base, 
int_subtype_base, 
imon_wf, 
lt_int_wf, 
bool_wf, 
uiff_transitivity, 
assert_wf, 
less_than_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformless_wf, 
itermVar_wf, 
intformeq_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_wf, 
le_int_wf, 
le_wf, 
bnot_wf, 
eqff_to_assert, 
assert_functionality_wrt_uiff, 
bnot_of_lt_int, 
assert_of_le_int, 
grp_id_wf, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
functionEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
setElimination, 
rename, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
intEquality, 
applyEquality, 
equalityTransitivity, 
equalitySymmetry, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
baseApply, 
closedConclusion, 
baseClosed, 
independent_functionElimination, 
productElimination, 
independent_isectElimination, 
natural_numberEquality, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
dependent_functionElimination, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll
Latex:
\mforall{}[g:IMonoid].  \mforall{}[i,j:\mBbbZ{}].    \mforall{}[E:\{i..j\msupminus{}\}  {}\mrightarrow{}  |g|].  (\mPi{}(*,e)  i  \mleq{}  k  <  j.  E[k]  =  e)  supposing  i  =  j
Date html generated:
2017_10_01-AM-08_15_33
Last ObjectModification:
2017_02_28-PM-02_00_15
Theory : groups_1
Home
Index