Nuprl Lemma : itop_unroll_base

[g:IMonoid]. ∀[i,j:ℤ].  ∀[E:{i..j-} ⟶ |g|]. (*,e) i ≤ k < j. E[k] e ∈ |g|) supposing j ∈ ℤ


Proof




Definitions occuring in Statement :  itop: Π(op,id) lb ≤ i < ub. E[i] imon: IMonoid grp_id: e grp_op: * grp_car: |g| int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a imon: IMonoid prop: subtype_rel: A ⊆B itop: Π(op,id) lb ≤ i < ub. E[i] ycomb: Y all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q ifthenelse: if then else fi  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top bfalse: ff guard: {T}
Lemmas referenced :  int_seg_wf grp_car_wf equal-wf-base int_subtype_base imon_wf lt_int_wf bool_wf uiff_transitivity assert_wf less_than_wf eqtt_to_assert assert_of_lt_int satisfiable-full-omega-tt intformand_wf intformless_wf itermVar_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_wf le_int_wf le_wf bnot_wf eqff_to_assert assert_functionality_wrt_uiff bnot_of_lt_int assert_of_le_int grp_id_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis functionEquality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality setElimination rename sqequalRule isect_memberEquality axiomEquality because_Cache intEquality applyEquality equalityTransitivity equalitySymmetry lambdaFormation unionElimination equalityElimination baseApply closedConclusion baseClosed independent_functionElimination productElimination independent_isectElimination natural_numberEquality dependent_pairFormation lambdaEquality int_eqEquality dependent_functionElimination voidElimination voidEquality independent_pairFormation computeAll

Latex:
\mforall{}[g:IMonoid].  \mforall{}[i,j:\mBbbZ{}].    \mforall{}[E:\{i..j\msupminus{}\}  {}\mrightarrow{}  |g|].  (\mPi{}(*,e)  i  \mleq{}  k  <  j.  E[k]  =  e)  supposing  i  =  j



Date html generated: 2017_10_01-AM-08_15_33
Last ObjectModification: 2017_02_28-PM-02_00_15

Theory : groups_1


Home Index