Nuprl Lemma : mon_reduce_wf
∀g:IMonoid. ∀as:|g| List.  (Π as ∈ |g|)
Proof
Definitions occuring in Statement : 
mon_reduce: mon_reduce, 
list: T List
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
imon: IMonoid
, 
grp_car: |g|
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
mon_reduce: mon_reduce, 
uall: ∀[x:A]. B[x]
, 
imon: IMonoid
Lemmas referenced : 
reduce_wf, 
grp_car_wf, 
grp_op_wf, 
grp_id_wf, 
list_wf, 
imon_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
sqequalRule, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
hypothesisEquality, 
universeIsType
Latex:
\mforall{}g:IMonoid.  \mforall{}as:|g|  List.    (\mPi{}  as  \mmember{}  |g|)
Date html generated:
2019_10_16-PM-01_01_46
Last ObjectModification:
2018_10_08-AM-11_47_02
Theory : list_2
Home
Index