Nuprl Lemma : mon_reduce_wf

g:IMonoid. ∀as:|g| List.  (Π as ∈ |g|)


Proof




Definitions occuring in Statement :  mon_reduce: mon_reduce list: List all: x:A. B[x] member: t ∈ T imon: IMonoid grp_car: |g|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T mon_reduce: mon_reduce uall: [x:A]. B[x] imon: IMonoid
Lemmas referenced :  reduce_wf grp_car_wf grp_op_wf grp_id_wf list_wf imon_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut sqequalRule introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename because_Cache hypothesis hypothesisEquality universeIsType

Latex:
\mforall{}g:IMonoid.  \mforall{}as:|g|  List.    (\mPi{}  as  \mmember{}  |g|)



Date html generated: 2019_10_16-PM-01_01_46
Last ObjectModification: 2018_10_08-AM-11_47_02

Theory : list_2


Home Index