Nuprl Lemma : map_functionality

A,B:Type. ∀f,f':A ⟶ B. ∀as,as':A List.  ((f f' ∈ (A ⟶ B))  (as ≡(A) as')  (map(f;as) ≡(B) map(f';as')))


Proof




Definitions occuring in Statement :  permr: as ≡(T) bs map: map(f;as) list: List all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] true: True squash: T subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q
Lemmas referenced :  permr_wf list_wf istype-universe map_wf map_permr_func squash_wf true_wf subtype_rel_self iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt universeIsType cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis equalityIsType1 inhabitedIsType isectElimination functionIsType universeEquality natural_numberEquality because_Cache independent_functionElimination applyEquality lambdaEquality_alt imageElimination equalityTransitivity equalitySymmetry sqequalRule imageMemberEquality baseClosed instantiate independent_isectElimination productElimination

Latex:
\mforall{}A,B:Type.  \mforall{}f,f':A  {}\mrightarrow{}  B.  \mforall{}as,as':A  List.
    ((f  =  f')  {}\mRightarrow{}  (as  \mequiv{}(A)  as')  {}\mRightarrow{}  (map(f;as)  \mequiv{}(B)  map(f';as')))



Date html generated: 2019_10_16-PM-01_02_31
Last ObjectModification: 2018_10_08-AM-11_32_52

Theory : list_2


Home Index