Nuprl Lemma : map_permr_func

A,B:Type. ∀f:A ⟶ B. ∀as,as':A List.  ((as ≡(A) as')  (map(f;as) ≡(B) map(f;as')))


Proof




Definitions occuring in Statement :  permr: as ≡(T) bs map: map(f;as) list: List all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] permr: as ≡(T) bs cand: c∧ B top: Top exists: x:A. B[x] subtype_rel: A ⊆B sym_grp: Sym(n) uimplies: supposing a squash: T true: True perm: Perm(T) ge: i ≥  guard: {T} int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q decidable: Dec(P) or: P ∨ Q false: False nat: less_than: a < b not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  permr_wf list_wf istype-universe map-length istype-void subtype_rel-equal perm_wf int_seg_wf length_wf map_wf squash_wf true_wf istype-int select_wf perm_f_wf non_neg_length map_length int_seg_properties decidable__le le_wf less_than_wf length_wf_nat nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformnot_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_not_lemma int_formula_prop_wf decidable__lt intformless_wf intformeq_wf int_formula_prop_less_lemma int_formula_prop_eq_lemma equal_wf map_select subtype_rel_self iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt universeIsType cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis inhabitedIsType isectElimination functionIsType universeEquality productElimination independent_pairFormation sqequalRule isect_memberEquality_alt voidElimination equalityTransitivity equalitySymmetry because_Cache dependent_pairFormation_alt applyEquality natural_numberEquality independent_isectElimination lambdaEquality_alt imageElimination imageMemberEquality baseClosed equalityIsType1 setElimination rename dependent_set_memberEquality_alt productIsType unionElimination applyLambdaEquality approximateComputation independent_functionElimination int_eqEquality hyp_replacement instantiate

Latex:
\mforall{}A,B:Type.  \mforall{}f:A  {}\mrightarrow{}  B.  \mforall{}as,as':A  List.    ((as  \mequiv{}(A)  as')  {}\mRightarrow{}  (map(f;as)  \mequiv{}(B)  map(f;as')))



Date html generated: 2019_10_16-PM-01_02_28
Last ObjectModification: 2018_10_08-AM-11_44_52

Theory : list_2


Home Index