Nuprl Lemma : map_permr_func
∀A,B:Type. ∀f:A ⟶ B. ∀as,as':A List.  ((as ≡(A) as') 
⇒ (map(f;as) ≡(B) map(f;as')))
Proof
Definitions occuring in Statement : 
permr: as ≡(T) bs
, 
map: map(f;as)
, 
list: T List
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
permr: as ≡(T) bs
, 
cand: A c∧ B
, 
top: Top
, 
exists: ∃x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
sym_grp: Sym(n)
, 
uimplies: b supposing a
, 
squash: ↓T
, 
true: True
, 
perm: Perm(T)
, 
ge: i ≥ j 
, 
guard: {T}
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
false: False
, 
nat: ℕ
, 
less_than: a < b
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
permr_wf, 
list_wf, 
istype-universe, 
map-length, 
istype-void, 
subtype_rel-equal, 
perm_wf, 
int_seg_wf, 
length_wf, 
map_wf, 
squash_wf, 
true_wf, 
istype-int, 
select_wf, 
perm_f_wf, 
non_neg_length, 
map_length, 
int_seg_properties, 
decidable__le, 
le_wf, 
less_than_wf, 
length_wf_nat, 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformnot_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
intformeq_wf, 
int_formula_prop_less_lemma, 
int_formula_prop_eq_lemma, 
equal_wf, 
map_select, 
subtype_rel_self, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
inhabitedIsType, 
isectElimination, 
functionIsType, 
universeEquality, 
productElimination, 
independent_pairFormation, 
sqequalRule, 
isect_memberEquality_alt, 
voidElimination, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
dependent_pairFormation_alt, 
applyEquality, 
natural_numberEquality, 
independent_isectElimination, 
lambdaEquality_alt, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
equalityIsType1, 
setElimination, 
rename, 
dependent_set_memberEquality_alt, 
productIsType, 
unionElimination, 
applyLambdaEquality, 
approximateComputation, 
independent_functionElimination, 
int_eqEquality, 
hyp_replacement, 
instantiate
Latex:
\mforall{}A,B:Type.  \mforall{}f:A  {}\mrightarrow{}  B.  \mforall{}as,as':A  List.    ((as  \mequiv{}(A)  as')  {}\mRightarrow{}  (map(f;as)  \mequiv{}(B)  map(f;as')))
Date html generated:
2019_10_16-PM-01_02_28
Last ObjectModification:
2018_10_08-AM-11_44_52
Theory : list_2
Home
Index