Nuprl Lemma : map_functionality_2

A,B:Type. ∀as:A List. ∀f,f':A ⟶ B. ∀as:A List.
  ((f f' ∈ ({x:A| mem_f(A;x;as)}  ⟶ B))  (map(f;as) map(f';as) ∈ (B List)))


Proof




Definitions occuring in Statement :  mem_f: mem_f(T;a;bs) map: map(f;as) list: List all: x:A. B[x] implies:  Q set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a mem_f: mem_f(T;a;bs) ycomb: Y so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] or: P ∨ Q squash: T true: True guard: {T}
Lemmas referenced :  equal_wf mem_f_wf subtype_rel_dep_function set_wf list_wf list_induction map_wf list_ind_nil_lemma map_nil_lemma nil_wf false_wf list_ind_cons_lemma map_cons_lemma or_wf cons_wf squash_wf true_wf subtype_rel_sets equal_functionality_wrt_subtype_rel2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis introduction extract_by_obid sqequalHypSubstitution isectElimination thin functionEquality setEquality hypothesisEquality dependent_functionElimination applyEquality sqequalRule lambdaEquality independent_isectElimination setElimination rename because_Cache independent_functionElimination isect_memberEquality voidElimination voidEquality imageElimination equalityTransitivity equalitySymmetry universeEquality natural_numberEquality imageMemberEquality baseClosed hyp_replacement applyLambdaEquality cumulativity functionExtensionality inlFormation dependent_set_memberEquality inrFormation

Latex:
\mforall{}A,B:Type.  \mforall{}as:A  List.  \mforall{}f,f':A  {}\mrightarrow{}  B.  \mforall{}as:A  List.    ((f  =  f')  {}\mRightarrow{}  (map(f;as)  =  map(f';as)))



Date html generated: 2019_10_16-PM-01_02_34
Last ObjectModification: 2018_09_17-PM-06_17_46

Theory : list_2


Home Index