Nuprl Lemma : map_functionality_2
∀A,B:Type. ∀as:A List. ∀f,f':A ⟶ B. ∀as:A List.
  ((f = f' ∈ ({x:A| mem_f(A;x;as)}  ⟶ B)) 
⇒ (map(f;as) = map(f';as) ∈ (B List)))
Proof
Definitions occuring in Statement : 
mem_f: mem_f(T;a;bs)
, 
map: map(f;as)
, 
list: T List
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
mem_f: mem_f(T;a;bs)
, 
ycomb: Y
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
top: Top
, 
so_apply: x[s1;s2;s3]
, 
or: P ∨ Q
, 
squash: ↓T
, 
true: True
, 
guard: {T}
Lemmas referenced : 
equal_wf, 
mem_f_wf, 
subtype_rel_dep_function, 
set_wf, 
list_wf, 
list_induction, 
map_wf, 
list_ind_nil_lemma, 
map_nil_lemma, 
nil_wf, 
false_wf, 
list_ind_cons_lemma, 
map_cons_lemma, 
or_wf, 
cons_wf, 
squash_wf, 
true_wf, 
subtype_rel_sets, 
equal_functionality_wrt_subtype_rel2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
hypothesis, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
functionEquality, 
setEquality, 
hypothesisEquality, 
dependent_functionElimination, 
applyEquality, 
sqequalRule, 
lambdaEquality, 
independent_isectElimination, 
setElimination, 
rename, 
because_Cache, 
independent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
hyp_replacement, 
applyLambdaEquality, 
cumulativity, 
functionExtensionality, 
inlFormation, 
dependent_set_memberEquality, 
inrFormation
Latex:
\mforall{}A,B:Type.  \mforall{}as:A  List.  \mforall{}f,f':A  {}\mrightarrow{}  B.  \mforall{}as:A  List.    ((f  =  f')  {}\mRightarrow{}  (map(f;as)  =  map(f';as)))
Date html generated:
2019_10_16-PM-01_02_34
Last ObjectModification:
2018_09_17-PM-06_17_46
Theory : list_2
Home
Index