Nuprl Lemma : all_mset_elim

s:DSet. ∀F:MSet{s} ⟶ ℙ.  ((∀a:MSet{s}. SqStable(F[a]))  (∀a:MSet{s}. F[a] ⇐⇒ ∀a:|s| List. F[mk_mset(a)]))


Proof




Definitions occuring in Statement :  mk_mset: mk_mset(as) mset: MSet{s} list: List sq_stable: SqStable(P) prop: so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q implies:  Q function: x:A ⟶ B[x] dset: DSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] mk_mset: mk_mset(as) mset: MSet{s} dset: DSet so_lambda: λ2y.t[x; y] so_apply: x[s1;s2]
Lemmas referenced :  all_wf mset_wf sq_stable_wf dset_wf all_quot_elim list_wf set_car_wf permr_wf permr_equiv_rel
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin dependent_functionElimination hypothesisEquality hypothesis sqequalRule lambdaEquality applyEquality functionEquality cumulativity universeEquality setElimination rename independent_functionElimination

Latex:
\mforall{}s:DSet.  \mforall{}F:MSet\{s\}  {}\mrightarrow{}  \mBbbP{}.
    ((\mforall{}a:MSet\{s\}.  SqStable(F[a]))  {}\mRightarrow{}  (\mforall{}a:MSet\{s\}.  F[a]  \mLeftarrow{}{}\mRightarrow{}  \mforall{}a:|s|  List.  F[mk\_mset(a)]))



Date html generated: 2016_05_16-AM-07_46_20
Last ObjectModification: 2015_12_28-PM-06_03_59

Theory : mset


Home Index