Nuprl Lemma : all_quot_elim
∀[T:Type]. ∀[E:T ⟶ T ⟶ ℙ].
  (EquivRel(T;x,y.E[x;y])
  
⇒ (∀[F:(x,y:T//E[x;y]) ⟶ ℙ]. ((∀w:x,y:T//E[x;y]. SqStable(F w)) 
⇒ (∀z:x,y:T//E[x;y]. F[z] 
⇐⇒ ∀z:T. F[z]))))
Proof
Definitions occuring in Statement : 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
quotient: x,y:A//B[x; y]
, 
sq_stable: SqStable(P)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
quotient: x,y:A//B[x; y]
, 
squash: ↓T
, 
guard: {T}
, 
sq_stable: SqStable(P)
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x y.t[x; y]
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
rev_implies: P 
⇐ Q
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
so_apply: x[s1;s2]
Lemmas referenced : 
squash_wf, 
equal_wf, 
equal-wf-base, 
subtype_rel_self, 
all_wf, 
quotient_wf, 
subtype_quotient, 
sq_stable_wf, 
equiv_rel_wf
Rules used in proof : 
pointwiseFunctionalityForEquality, 
pertypeElimination, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
rename, 
imageMemberEquality, 
baseClosed, 
productEquality, 
instantiate, 
independent_functionElimination, 
dependent_functionElimination, 
isect_memberFormation, 
lambdaFormation, 
independent_pairFormation, 
hypothesisEquality, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
lambdaEquality, 
applyEquality, 
independent_isectElimination, 
hypothesis, 
functionEquality, 
cumulativity, 
universeEquality, 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep
Latex:
\mforall{}[T:Type].  \mforall{}[E:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    (EquivRel(T;x,y.E[x;y])
    {}\mRightarrow{}  (\mforall{}[F:(x,y:T//E[x;y])  {}\mrightarrow{}  \mBbbP{}]
                ((\mforall{}w:x,y:T//E[x;y].  SqStable(F  w))  {}\mRightarrow{}  (\mforall{}z:x,y:T//E[x;y].  F[z]  \mLeftarrow{}{}\mRightarrow{}  \mforall{}z:T.  F[z]))))
Date html generated:
2019_06_20-PM-01_05_18
Last ObjectModification:
2019_06_20-PM-00_59_36
Theory : quot_1
Home
Index