Nuprl Lemma : sq_stable_wf
∀[A:ℙ]. (SqStable(A) ∈ ℙ)
Proof
Definitions occuring in Statement : 
sq_stable: SqStable(P)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
sq_stable: SqStable(P)
, 
implies: P 
⇒ Q
, 
prop: ℙ
Lemmas referenced : 
squash_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
functionEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :universeIsType, 
universeEquality
Latex:
\mforall{}[A:\mBbbP{}].  (SqStable(A)  \mmember{}  \mBbbP{})
Date html generated:
2019_06_20-AM-11_15_15
Last ObjectModification:
2018_09_26-AM-10_43_16
Theory : core_2
Home
Index