Nuprl Lemma : rng_mssum_when_swap

s:DSet. ∀r:Rng. ∀f:|s| ⟶ |r|. ∀b:𝔹. ∀a:MSet{s}.  ((Σx ∈ a. (when b. f[x])) (when b. x ∈ a. f[x])) ∈ |r|)


Proof




Definitions occuring in Statement :  rng_mssum: rng_mssum mset: MSet{s} bool: 𝔹 so_apply: x[s] all: x:A. B[x] function: x:A ⟶ B[x] equal: t ∈ T rng_when: rng_when rng: Rng rng_car: |r| dset: DSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T top: Top so_lambda: λ2x.t[x] so_apply: x[s] rng: Rng dset: DSet implies:  Q iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q rng_when: rng_when prop:
Lemmas referenced :  rng_mssum_elim_lemma all_mset_elim equal_wf rng_car_wf rng_mssum_wf rng_when_wf set_car_wf mset_wf sq_stable__equal all_wf list_wf rng_lsum_wf bool_wf rng_wf dset_wf rng_lsum_when_swap
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut addLevel sqequalRule introduction extract_by_obid sqequalHypSubstitution isectElimination thin isect_memberEquality voidElimination voidEquality hypothesis because_Cache dependent_functionElimination hypothesisEquality lambdaEquality setElimination rename applyEquality independent_functionElimination productElimination levelHypothesis functionEquality

Latex:
\mforall{}s:DSet.  \mforall{}r:Rng.  \mforall{}f:|s|  {}\mrightarrow{}  |r|.  \mforall{}b:\mBbbB{}.  \mforall{}a:MSet\{s\}.
    ((\mSigma{}x  \mmember{}  a.  (when  b.  f[x]))  =  (when  b.  (\mSigma{}x  \mmember{}  a.  f[x])))



Date html generated: 2018_05_22-AM-07_46_09
Last ObjectModification: 2018_05_19-AM-08_30_36

Theory : list_3


Home Index