Nuprl Lemma : rng_lsum_when_swap

r:Rng. ∀A:Type. ∀f:A ⟶ |r|. ∀b:𝔹. ∀as:A List.  {r} x ∈ as. (when b. f[x]) (when b. Σ{r} x ∈ as. f[x]) ∈ |r|)


Proof




Definitions occuring in Statement :  rng_lsum: Σ{r} x ∈ as. f[x] list: List bool: 𝔹 so_apply: x[s] all: x:A. B[x] function: x:A ⟶ B[x] universe: Type equal: t ∈ T rng_when: rng_when rng: Rng rng_car: |r|
Definitions unfolded in proof :  infix_ap: y rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q guard: {T} uimplies: supposing a subtype_rel: A ⊆B true: True prop: squash: T top: Top implies:  Q so_apply: x[s] rng: Rng so_lambda: λ2x.t[x] member: t ∈ T uall: [x:A]. B[x] all: x:A. B[x]
Lemmas referenced :  rng_wf bool_wf rng_when_thru_plus infix_ap_wf rng_plus_wf rng_lsum_cons_lemma iff_weakening_equal rng_when_of_zero rng_zero_wf true_wf squash_wf rng_lsum_nil_lemma list_wf rng_when_wf rng_lsum_wf rng_car_wf equal_wf list_induction
Rules used in proof :  functionEquality productElimination independent_isectElimination baseClosed imageMemberEquality natural_numberEquality because_Cache universeEquality equalitySymmetry equalityTransitivity imageElimination voidEquality voidElimination isect_memberEquality dependent_functionElimination independent_functionElimination functionExtensionality applyEquality cumulativity hypothesis rename setElimination lambdaEquality sqequalRule hypothesisEquality isectElimination sqequalHypSubstitution extract_by_obid introduction thin cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}r:Rng.  \mforall{}A:Type.  \mforall{}f:A  {}\mrightarrow{}  |r|.  \mforall{}b:\mBbbB{}.  \mforall{}as:A  List.
    (\mSigma{}\{r\}  x  \mmember{}  as.  (when  b.  f[x])  =  (when  b.  \mSigma{}\{r\}  x  \mmember{}  as.  f[x]))



Date html generated: 2018_05_21-PM-09_32_55
Last ObjectModification: 2017_12_11-PM-04_21_51

Theory : matrices


Home Index