Nuprl Lemma : rng_zero_wf
∀[r:RngSig]. (0 ∈ |r|)
Proof
Definitions occuring in Statement :
rng_zero: 0
,
rng_car: |r|
,
rng_sig: RngSig
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
rng_sig: RngSig
,
rng_zero: 0
,
rng_car: |r|
,
pi1: fst(t)
,
pi2: snd(t)
Lemmas referenced :
rng_sig_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalHypSubstitution,
productElimination,
thin,
sqequalRule,
hypothesisEquality,
hypothesis,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
lemma_by_obid
Latex:
\mforall{}[r:RngSig]. (0 \mmember{} |r|)
Date html generated:
2016_05_15-PM-00_20_08
Last ObjectModification:
2015_12_27-AM-00_03_06
Theory : rings_1
Home
Index