Nuprl Lemma : rng_lsum_wf

[r:Rng]. ∀[A:Type]. ∀[f:A ⟶ |r|]. ∀[as:A List].  {r} x ∈ as. f[x] ∈ |r|)


Proof




Definitions occuring in Statement :  rng_lsum: Σ{r} x ∈ as. f[x] list: List uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type rng: Rng rng_car: |r|
Definitions unfolded in proof :  so_apply: x[s] rng: Rng rng_lsum: Σ{r} x ∈ as. f[x] member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  rng_wf list_wf map_wf rng_zero_wf rng_plus_wf rng_car_wf reduce_wf
Rules used in proof :  universeEquality functionEquality isect_memberEquality equalitySymmetry equalityTransitivity axiomEquality functionExtensionality applyEquality lambdaEquality cumulativity because_Cache hypothesis hypothesisEquality rename setElimination thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[r:Rng].  \mforall{}[A:Type].  \mforall{}[f:A  {}\mrightarrow{}  |r|].  \mforall{}[as:A  List].    (\mSigma{}\{r\}  x  \mmember{}  as.  f[x]  \mmember{}  |r|)



Date html generated: 2018_05_21-PM-09_32_38
Last ObjectModification: 2017_12_11-PM-00_35_04

Theory : matrices


Home Index