Nuprl Lemma : rng_lsum_wf
∀[r:Rng]. ∀[A:Type]. ∀[f:A ⟶ |r|]. ∀[as:A List].  (Σ{r} x ∈ as. f[x] ∈ |r|)
Proof
Definitions occuring in Statement : 
rng_lsum: Σ{r} x ∈ as. f[x]
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
rng: Rng
, 
rng_car: |r|
Definitions unfolded in proof : 
so_apply: x[s]
, 
rng: Rng
, 
rng_lsum: Σ{r} x ∈ as. f[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
rng_wf, 
list_wf, 
map_wf, 
rng_zero_wf, 
rng_plus_wf, 
rng_car_wf, 
reduce_wf
Rules used in proof : 
universeEquality, 
functionEquality, 
isect_memberEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
functionExtensionality, 
applyEquality, 
lambdaEquality, 
cumulativity, 
because_Cache, 
hypothesis, 
hypothesisEquality, 
rename, 
setElimination, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[r:Rng].  \mforall{}[A:Type].  \mforall{}[f:A  {}\mrightarrow{}  |r|].  \mforall{}[as:A  List].    (\mSigma{}\{r\}  x  \mmember{}  as.  f[x]  \mmember{}  |r|)
Date html generated:
2018_05_21-PM-09_32_38
Last ObjectModification:
2017_12_11-PM-00_35_04
Theory : matrices
Home
Index