Nuprl Lemma : rng_lsum_cons_lemma

f,v,u,r:Top.  {r} x ∈ [u v]. f[x] f[u] +r Σ{r} x ∈ v. f[x])


Proof




Definitions occuring in Statement :  rng_lsum: Σ{r} x ∈ as. f[x] cons: [a b] top: Top infix_ap: y so_apply: x[s] all: x:A. B[x] sqequal: t rng_plus: +r
Definitions unfolded in proof :  top: Top member: t ∈ T all: x:A. B[x] infix_ap: y rng_lsum: Σ{r} x ∈ as. f[x]
Lemmas referenced :  top_wf reduce_cons_lemma map_cons_lemma
Rules used in proof :  lambdaFormation hypothesis voidEquality voidElimination isect_memberEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut computationStep sqequalTransitivity sqequalReflexivity sqequalRule sqequalSubstitution

Latex:
\mforall{}f,v,u,r:Top.    (\mSigma{}\{r\}  x  \mmember{}  [u  /  v].  f[x]  \msim{}  f[u]  +r  \mSigma{}\{r\}  x  \mmember{}  v.  f[x])



Date html generated: 2018_05_21-PM-09_32_41
Last ObjectModification: 2017_12_11-PM-00_41_38

Theory : matrices


Home Index