Nuprl Lemma : rng_lsum_cons_lemma
∀f,v,u,r:Top.  (Σ{r} x ∈ [u / v]. f[x] ~ f[u] +r Σ{r} x ∈ v. f[x])
Proof
Definitions occuring in Statement : 
rng_lsum: Σ{r} x ∈ as. f[x]
, 
cons: [a / b]
, 
top: Top
, 
infix_ap: x f y
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
sqequal: s ~ t
, 
rng_plus: +r
Definitions unfolded in proof : 
top: Top
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
infix_ap: x f y
, 
rng_lsum: Σ{r} x ∈ as. f[x]
Lemmas referenced : 
top_wf, 
reduce_cons_lemma, 
map_cons_lemma
Rules used in proof : 
lambdaFormation, 
hypothesis, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
computationStep, 
sqequalTransitivity, 
sqequalReflexivity, 
sqequalRule, 
sqequalSubstitution
Latex:
\mforall{}f,v,u,r:Top.    (\mSigma{}\{r\}  x  \mmember{}  [u  /  v].  f[x]  \msim{}  f[u]  +r  \mSigma{}\{r\}  x  \mmember{}  v.  f[x])
Date html generated:
2018_05_21-PM-09_32_41
Last ObjectModification:
2017_12_11-PM-00_41_38
Theory : matrices
Home
Index