Nuprl Lemma : rng_when_thru_plus
∀[r:Rng]. ∀[b:𝔹]. ∀[p,q:|r|].  ((when b. (p +r q)) = ((when b. p) +r (when b. q)) ∈ |r|)
Proof
Definitions occuring in Statement : 
rng_when: rng_when, 
rng: Rng, 
rng_plus: +r, 
rng_car: |r|, 
bool: 𝔹, 
uall: ∀[x:A]. B[x], 
infix_ap: x f y, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
grp: Group{i}, 
mon: Mon, 
imon: IMonoid, 
prop: ℙ, 
rng_when: rng_when, 
add_grp_of_rng: r↓+gp, 
grp_car: |g|, 
pi1: fst(t), 
grp_op: *, 
pi2: snd(t), 
rng: Rng
Lemmas referenced : 
mon_when_thru_op, 
add_grp_of_rng_wf_a, 
grp_sig_wf, 
monoid_p_wf, 
grp_car_wf, 
grp_op_wf, 
grp_id_wf, 
inverse_wf, 
grp_inv_wf, 
rng_car_wf, 
bool_wf, 
rng_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
sqequalRule, 
lambdaEquality, 
setElimination, 
rename, 
setEquality, 
cumulativity, 
isect_memberEquality, 
axiomEquality
Latex:
\mforall{}[r:Rng].  \mforall{}[b:\mBbbB{}].  \mforall{}[p,q:|r|].    ((when  b.  (p  +r  q))  =  ((when  b.  p)  +r  (when  b.  q)))
Date html generated:
2016_05_15-PM-00_29_09
Last ObjectModification:
2015_12_26-PM-11_58_25
Theory : rings_1
Home
Index