Nuprl Lemma : mon_when_thru_op
∀[g:IMonoid]. ∀[b:𝔹]. ∀[p,q:|g|].  ((when b. (p * q)) = ((when b. p) * (when b. q)) ∈ |g|)
Proof
Definitions occuring in Statement : 
mon_when: when b. p, 
imon: IMonoid, 
grp_op: *, 
grp_car: |g|, 
bool: 𝔹, 
uall: ∀[x:A]. B[x], 
infix_ap: x f y, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
mon_when: when b. p, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
imon: IMonoid, 
squash: ↓T, 
prop: ℙ, 
and: P ∧ Q, 
true: True, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q
Lemmas referenced : 
grp_car_wf, 
bool_wf, 
imon_wf, 
infix_ap_wf, 
grp_op_wf, 
equal_wf, 
squash_wf, 
true_wf, 
grp_id_wf, 
mon_ident, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
unionElimination, 
thin, 
equalityElimination, 
sqequalRule, 
hypothesis, 
extract_by_obid, 
isectElimination, 
setElimination, 
rename, 
hypothesisEquality, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
applyEquality, 
lambdaEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
productElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
independent_functionElimination
Latex:
\mforall{}[g:IMonoid].  \mforall{}[b:\mBbbB{}].  \mforall{}[p,q:|g|].    ((when  b.  (p  *  q))  =  ((when  b.  p)  *  (when  b.  q)))
Date html generated:
2017_10_01-AM-08_17_13
Last ObjectModification:
2017_02_28-PM-02_02_09
Theory : groups_1
Home
Index