Nuprl Lemma : rng_mssum_elim_lemma
∀[s,r,as,f:Top]. (Σx ∈ mk_mset(as). f[x] ~ Σ{r} x ∈ as. f[x])
Proof
Definitions occuring in Statement :
rng_mssum: rng_mssum,
mk_mset: mk_mset(as)
,
uall: ∀[x:A]. B[x]
,
top: Top
,
so_apply: x[s]
,
sqequal: s ~ t
,
rng_lsum: Σ{r} x ∈ as. f[x]
Definitions unfolded in proof :
rng_lsum: Σ{r} x ∈ as. f[x]
,
mk_mset: mk_mset(as)
,
rng_mssum: rng_mssum,
mset_for: mset_for,
mon_for: For{g} x ∈ as. f[x]
,
add_grp_of_rng: r↓+gp
,
grp_op: *
,
pi2: snd(t)
,
pi1: fst(t)
,
grp_id: e
,
for: For{T,op,id} x ∈ as. f[x]
,
tlambda: λx:T. b[x]
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
Lemmas referenced :
top_wf
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
isect_memberFormation,
introduction,
cut,
sqequalAxiom,
extract_by_obid,
hypothesis,
sqequalHypSubstitution,
isect_memberEquality,
isectElimination,
thin,
hypothesisEquality,
because_Cache
Latex:
\mforall{}[s,r,as,f:Top]. (\mSigma{}x \mmember{} mk\_mset(as). f[x] \msim{} \mSigma{}\{r\} x \mmember{} as. f[x])
Date html generated:
2018_05_22-AM-07_46_04
Last ObjectModification:
2018_05_19-AM-08_30_25
Theory : list_3
Home
Index