Nuprl Lemma : rng_mssum_elim_lemma

[s,r,as,f:Top].  x ∈ mk_mset(as). f[x] ~ Σ{r} x ∈ as. f[x])


Proof




Definitions occuring in Statement :  rng_mssum: rng_mssum mk_mset: mk_mset(as) uall: [x:A]. B[x] top: Top so_apply: x[s] sqequal: t rng_lsum: Σ{r} x ∈ as. f[x]
Definitions unfolded in proof :  rng_lsum: Σ{r} x ∈ as. f[x] mk_mset: mk_mset(as) rng_mssum: rng_mssum mset_for: mset_for mon_for: For{g} x ∈ as. f[x] add_grp_of_rng: r↓+gp grp_op: * pi2: snd(t) pi1: fst(t) grp_id: e for: For{T,op,id} x ∈ as. f[x] tlambda: λx:T. b[x] uall: [x:A]. B[x] member: t ∈ T
Lemmas referenced :  top_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut sqequalAxiom extract_by_obid hypothesis sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality because_Cache

Latex:
\mforall{}[s,r,as,f:Top].    (\mSigma{}x  \mmember{}  mk\_mset(as).  f[x]  \msim{}  \mSigma{}\{r\}  x  \mmember{}  as.  f[x])



Date html generated: 2018_05_22-AM-07_46_04
Last ObjectModification: 2018_05_19-AM-08_30_25

Theory : list_3


Home Index