Nuprl Lemma : rng_fset_for_when_eq

s:DSet. ∀r:Rng. ∀f:|s| ⟶ |r|. ∀e:|s|. ∀as:FiniteSet{s}.
  ((↑(e ∈b as))  ((Σx ∈ as. (when (=be. f[x])) f[e] ∈ |r|))


Proof




Definitions occuring in Statement :  rng_mssum: rng_mssum mset_mem: mset_mem finite_set: FiniteSet{s} assert: b infix_ap: y so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] equal: t ∈ T rng_when: rng_when rng: Rng rng_car: |r| dset: DSet set_eq: =b set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B abgrp: AbGrp grp: Group{i} mon: Mon iabmonoid: IAbMonoid imon: IMonoid prop: so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a implies:  Q rng_when: rng_when rng_mssum: rng_mssum add_grp_of_rng: r↓+gp grp_car: |g| pi1: fst(t)
Lemmas referenced :  fset_for_when_eq add_grp_of_rng_wf_b subtype_rel_sets grp_sig_wf monoid_p_wf grp_car_wf grp_op_wf grp_id_wf inverse_wf grp_inv_wf comm_wf set_wf rng_wf dset_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality isectElimination hypothesis applyEquality sqequalRule instantiate setEquality cumulativity setElimination rename lambdaEquality independent_isectElimination

Latex:
\mforall{}s:DSet.  \mforall{}r:Rng.  \mforall{}f:|s|  {}\mrightarrow{}  |r|.  \mforall{}e:|s|.  \mforall{}as:FiniteSet\{s\}.
    ((\muparrow{}(e  \mmember{}\msubb{}  as))  {}\mRightarrow{}  ((\mSigma{}x  \mmember{}  as.  (when  x  (=\msubb{})  e.  f[x]))  =  f[e]))



Date html generated: 2016_05_16-AM-08_12_11
Last ObjectModification: 2015_12_28-PM-06_06_22

Theory : list_3


Home Index