Nuprl Lemma : fset_for_when_eq

s:DSet. ∀g:IAbMonoid. ∀f:|s| ⟶ |g|. ∀e:|s|. ∀as:FiniteSet{s}.
  ((↑(e ∈b as))  ((msFor{g} x ∈ as. when (=be. f[x]) f[e] ∈ |g|))


Proof




Definitions occuring in Statement :  mset_for: mset_for mset_mem: mset_mem finite_set: FiniteSet{s} assert: b infix_ap: y so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] equal: t ∈ T mon_when: when b. p iabmonoid: IAbMonoid grp_car: |g| dset: DSet set_eq: =b set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T squash: T uall: [x:A]. B[x] prop: iabmonoid: IAbMonoid imon: IMonoid so_lambda: λ2x.t[x] so_apply: x[s] dset: DSet infix_ap: y uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q) uimplies: supposing a finite_set: FiniteSet{s} true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  equal_wf squash_wf true_wf grp_car_wf fset_for_when_unique set_car_wf set_eq_wf assert_of_dset_eq assert_wf mset_mem_wf iff_weakening_equal finite_set_wf iabmonoid_wf dset_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut applyEquality thin lambdaEquality sqequalHypSubstitution imageElimination introduction extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry universeEquality setElimination rename dependent_functionElimination sqequalRule functionExtensionality because_Cache independent_functionElimination productElimination independent_isectElimination natural_numberEquality imageMemberEquality baseClosed functionEquality

Latex:
\mforall{}s:DSet.  \mforall{}g:IAbMonoid.  \mforall{}f:|s|  {}\mrightarrow{}  |g|.  \mforall{}e:|s|.  \mforall{}as:FiniteSet\{s\}.
    ((\muparrow{}(e  \mmember{}\msubb{}  as))  {}\mRightarrow{}  ((msFor\{g\}  x  \mmember{}  as.  when  x  (=\msubb{})  e.  f[x])  =  f[e]))



Date html generated: 2017_10_01-AM-10_00_43
Last ObjectModification: 2017_03_03-PM-01_01_59

Theory : mset


Home Index