Nuprl Lemma : fset_for_when_eq
∀s:DSet. ∀g:IAbMonoid. ∀f:|s| ⟶ |g|. ∀e:|s|. ∀as:FiniteSet{s}.
  ((↑(e ∈b as)) 
⇒ ((msFor{g} x ∈ as. when x (=b) e. f[x]) = f[e] ∈ |g|))
Proof
Definitions occuring in Statement : 
mset_for: mset_for, 
mset_mem: mset_mem, 
finite_set: FiniteSet{s}
, 
assert: ↑b
, 
infix_ap: x f y
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
equal: s = t ∈ T
, 
mon_when: when b. p
, 
iabmonoid: IAbMonoid
, 
grp_car: |g|
, 
dset: DSet
, 
set_eq: =b
, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
squash: ↓T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
iabmonoid: IAbMonoid
, 
imon: IMonoid
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
dset: DSet
, 
infix_ap: x f y
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
rev_uimplies: rev_uimplies(P;Q)
, 
uimplies: b supposing a
, 
finite_set: FiniteSet{s}
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
equal_wf, 
squash_wf, 
true_wf, 
grp_car_wf, 
fset_for_when_unique, 
set_car_wf, 
set_eq_wf, 
assert_of_dset_eq, 
assert_wf, 
mset_mem_wf, 
iff_weakening_equal, 
finite_set_wf, 
iabmonoid_wf, 
dset_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
applyEquality, 
thin, 
lambdaEquality, 
sqequalHypSubstitution, 
imageElimination, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
universeEquality, 
setElimination, 
rename, 
dependent_functionElimination, 
sqequalRule, 
functionExtensionality, 
because_Cache, 
independent_functionElimination, 
productElimination, 
independent_isectElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
functionEquality
Latex:
\mforall{}s:DSet.  \mforall{}g:IAbMonoid.  \mforall{}f:|s|  {}\mrightarrow{}  |g|.  \mforall{}e:|s|.  \mforall{}as:FiniteSet\{s\}.
    ((\muparrow{}(e  \mmember{}\msubb{}  as))  {}\mRightarrow{}  ((msFor\{g\}  x  \mmember{}  as.  when  x  (=\msubb{})  e.  f[x])  =  f[e]))
Date html generated:
2017_10_01-AM-10_00_43
Last ObjectModification:
2017_03_03-PM-01_01_59
Theory : mset
Home
Index