Nuprl Lemma : fset_for_when_unique

s:DSet. ∀g:IAbMonoid. ∀f:|s| ⟶ |g|. ∀b:|s| ⟶ 𝔹. ∀u:|s|.
  ((↑b[u])
   (∀as:FiniteSet{s}
        ((↑(u
         ∈b as))
         (∀v:|s|. ((↑b[v])  (↑(v ∈b as))  (v u ∈ |s|)))
         ((msFor{g} x ∈ as. when b[x]. f[x]) f[u] ∈ |g|))))


Proof




Definitions occuring in Statement :  mset_for: mset_for mset_mem: mset_mem finite_set: FiniteSet{s} assert: b bool: 𝔹 so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] equal: t ∈ T mon_when: when b. p iabmonoid: IAbMonoid grp_car: |g| dset: DSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] dset: DSet so_lambda: λ2x.t[x] so_apply: x[s] finite_set: FiniteSet{s} iabmonoid: IAbMonoid imon: IMonoid guard: {T}
Lemmas referenced :  all_wf set_car_wf assert_wf mset_mem_wf equal_wf finite_set_wf bool_wf grp_car_wf iabmonoid_wf dset_wf fset_properties mset_for_when_unique
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis lemma_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality sqequalRule lambdaEquality functionEquality applyEquality dependent_functionElimination independent_functionElimination

Latex:
\mforall{}s:DSet.  \mforall{}g:IAbMonoid.  \mforall{}f:|s|  {}\mrightarrow{}  |g|.  \mforall{}b:|s|  {}\mrightarrow{}  \mBbbB{}.  \mforall{}u:|s|.
    ((\muparrow{}b[u])
    {}\mRightarrow{}  (\mforall{}as:FiniteSet\{s\}
                ((\muparrow{}(u
                  \mmember{}\msubb{}  as))
                {}\mRightarrow{}  (\mforall{}v:|s|.  ((\muparrow{}b[v])  {}\mRightarrow{}  (\muparrow{}(v  \mmember{}\msubb{}  as))  {}\mRightarrow{}  (v  =  u)))
                {}\mRightarrow{}  ((msFor\{g\}  x  \mmember{}  as.  when  b[x].  f[x])  =  f[u]))))



Date html generated: 2016_05_16-AM-07_51_44
Last ObjectModification: 2015_12_28-PM-05_59_52

Theory : mset


Home Index