Nuprl Lemma : mset_mem_wf
∀s:DSet. ∀x:|s|. ∀a:MSet{s}.  (x ∈b a ∈ 𝔹)
Proof
Definitions occuring in Statement : 
mset_mem: mset_mem, 
mset: MSet{s}, 
bool: 𝔹, 
all: ∀x:A. B[x], 
member: t ∈ T, 
dset: DSet, 
set_car: |p|
Definitions unfolded in proof : 
mset_mem: mset_mem, 
all: ∀x:A. B[x], 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
dset: DSet, 
mset: MSet{s}, 
quotient: x,y:A//B[x; y], 
and: P ∧ Q, 
prop: ℙ, 
squash: ↓T, 
implies: P ⇒ Q, 
true: True, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
mset_wf, 
set_car_wf, 
dset_wf, 
bool_wf, 
equal-wf-base, 
list_wf, 
permr_wf, 
equal_wf, 
squash_wf, 
true_wf, 
mem_functionality_wrt_permr, 
mem_wf, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
isectElimination, 
setElimination, 
rename, 
pointwiseFunctionalityForEquality, 
pertypeElimination, 
productElimination, 
productEquality, 
because_Cache, 
applyEquality, 
lambdaEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
independent_functionElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination
Latex:
\mforall{}s:DSet.  \mforall{}x:|s|.  \mforall{}a:MSet\{s\}.    (x  \mmember{}\msubb{}  a  \mmember{}  \mBbbB{})
Date html generated:
2017_10_01-AM-09_59_08
Last ObjectModification:
2017_03_03-PM-01_00_01
Theory : mset
Home
Index