Nuprl Lemma : mem_functionality_wrt_permr

s:DSet. ∀a,b:|s|. ∀as,bs:|s| List.  ((a b ∈ |s|)  (as ≡(|s|) bs)  a ∈b as b ∈b bs)


Proof




Definitions occuring in Statement :  mem: a ∈b as permr: as ≡(T) bs list: List bool: 𝔹 all: x:A. B[x] implies:  Q equal: t ∈ T dset: DSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q mem: a ∈b as member: t ∈ T uall: [x:A]. B[x] dset: DSet prop: subtype_rel: A ⊆B bool: 𝔹 grp_car: |g| pi1: fst(t) bor_mon: <𝔹,∨b> guard: {T} uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] true: True squash: T infix_ap: y iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q
Lemmas referenced :  permr_wf set_car_wf list_wf dset_wf bool_wf bor_mon_wf abmonoid_subtype_iabmonoid infix_ap_wf grp_car_wf set_eq_wf subtype_rel_self mon_subtype_grp_sig abmonoid_subtype_mon subtype_rel_transitivity abmonoid_wf mon_wf grp_sig_wf mem_f_wf mon_for_wf equal_wf squash_wf true_wf istype-universe mon_for_functionality_wrt_permr iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut hypothesis universeIsType introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination setElimination rename hypothesisEquality equalityIsType1 inhabitedIsType applyEquality sqequalRule lambdaEquality_alt because_Cache functionEquality instantiate independent_isectElimination natural_numberEquality imageElimination equalityTransitivity equalitySymmetry universeEquality independent_functionElimination imageMemberEquality baseClosed productElimination

Latex:
\mforall{}s:DSet.  \mforall{}a,b:|s|.  \mforall{}as,bs:|s|  List.    ((a  =  b)  {}\mRightarrow{}  (as  \mequiv{}(|s|)  bs)  {}\mRightarrow{}  a  \mmember{}\msubb{}  as  =  b  \mmember{}\msubb{}  bs)



Date html generated: 2019_10_16-PM-01_03_27
Last ObjectModification: 2018_10_08-AM-11_21_55

Theory : list_2


Home Index