Nuprl Lemma : mem_functionality_wrt_permr
∀s:DSet. ∀a,b:|s|. ∀as,bs:|s| List.  ((a = b ∈ |s|) 
⇒ (as ≡(|s|) bs) 
⇒ a ∈b as = b ∈b bs)
Proof
Definitions occuring in Statement : 
mem: a ∈b as
, 
permr: as ≡(T) bs
, 
list: T List
, 
bool: 𝔹
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
equal: s = t ∈ T
, 
dset: DSet
, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
mem: a ∈b as
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
dset: DSet
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
bool: 𝔹
, 
grp_car: |g|
, 
pi1: fst(t)
, 
bor_mon: <𝔹,∨b>
, 
guard: {T}
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
true: True
, 
squash: ↓T
, 
infix_ap: x f y
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
permr_wf, 
set_car_wf, 
list_wf, 
dset_wf, 
bool_wf, 
bor_mon_wf, 
abmonoid_subtype_iabmonoid, 
infix_ap_wf, 
grp_car_wf, 
set_eq_wf, 
subtype_rel_self, 
mon_subtype_grp_sig, 
abmonoid_subtype_mon, 
subtype_rel_transitivity, 
abmonoid_wf, 
mon_wf, 
grp_sig_wf, 
mem_f_wf, 
mon_for_wf, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
mon_for_functionality_wrt_permr, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
hypothesis, 
universeIsType, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isectElimination, 
setElimination, 
rename, 
hypothesisEquality, 
equalityIsType1, 
inhabitedIsType, 
applyEquality, 
sqequalRule, 
lambdaEquality_alt, 
because_Cache, 
functionEquality, 
instantiate, 
independent_isectElimination, 
natural_numberEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
productElimination
Latex:
\mforall{}s:DSet.  \mforall{}a,b:|s|.  \mforall{}as,bs:|s|  List.    ((a  =  b)  {}\mRightarrow{}  (as  \mequiv{}(|s|)  bs)  {}\mRightarrow{}  a  \mmember{}\msubb{}  as  =  b  \mmember{}\msubb{}  bs)
Date html generated:
2019_10_16-PM-01_03_27
Last ObjectModification:
2018_10_08-AM-11_21_55
Theory : list_2
Home
Index