Nuprl Lemma : abmonoid_subtype_iabmonoid

AbMon ⊆IAbMonoid


Proof




Definitions occuring in Statement :  abmonoid: AbMon iabmonoid: IAbMonoid subtype_rel: A ⊆B
Definitions unfolded in proof :  abmonoid: AbMon mon: Mon iabmonoid: IAbMonoid imon: IMonoid uall: [x:A]. B[x] member: t ∈ T prop:
Lemmas referenced :  subtype_rel_self grp_sig_wf monoid_p_wf grp_car_wf grp_op_wf grp_id_wf comm_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalTransitivity computationStep sqequalReflexivity cut instantiate lemma_by_obid sqequalHypSubstitution isectElimination thin setEquality hypothesis cumulativity hypothesisEquality setElimination rename

Latex:
AbMon  \msubseteq{}r  IAbMonoid



Date html generated: 2016_05_15-PM-00_07_27
Last ObjectModification: 2015_12_26-PM-11_46_43

Theory : groups_1


Home Index