Nuprl Lemma : bor_mon_wf

<𝔹,∨b> ∈ AbMon


Proof




Definitions occuring in Statement :  bor_mon: <𝔹,∨b> abmonoid: AbMon member: t ∈ T
Definitions unfolded in proof :  bor_mon: <𝔹,∨b> uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a assoc: Assoc(T;op) infix_ap: y top: Top ident: Ident(T;op;id) bor: p ∨bq ifthenelse: if then else fi  bfalse: ff and: P ∧ Q cand: c∧ B squash: T prop: true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q comm: Comm(T;op) all: x:A. B[x] bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b false: False
Lemmas referenced :  mk_abmonoid bool_wf eq_bool_wf btrue_wf bor_wf bfalse_wf bor-assoc equal_wf squash_wf true_wf bor_ff_simp iff_weakening_equal eqtt_to_assert testxxx_lemma bor_tt_simp eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis lambdaEquality hypothesisEquality independent_isectElimination isect_memberFormation sqequalRule isect_memberEquality voidElimination voidEquality axiomEquality because_Cache applyEquality imageElimination equalityTransitivity equalitySymmetry universeEquality natural_numberEquality imageMemberEquality baseClosed productElimination independent_functionElimination independent_pairFormation independent_pairEquality lambdaFormation unionElimination equalityElimination dependent_functionElimination dependent_pairFormation promote_hyp instantiate cumulativity

Latex:
<\mBbbB{},\mvee{}\msubb{}>  \mmember{}  AbMon



Date html generated: 2017_10_01-AM-08_16_47
Last ObjectModification: 2017_02_28-PM-02_01_49

Theory : groups_1


Home Index