Nuprl Lemma : bor_mon_wf
<𝔹,∨b> ∈ AbMon
Proof
Definitions occuring in Statement : 
bor_mon: <𝔹,∨b>
, 
abmonoid: AbMon
, 
member: t ∈ T
Definitions unfolded in proof : 
bor_mon: <𝔹,∨b>
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
assoc: Assoc(T;op)
, 
infix_ap: x f y
, 
top: Top
, 
ident: Ident(T;op;id)
, 
bor: p ∨bq
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
comm: Comm(T;op)
, 
all: ∀x:A. B[x]
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
Lemmas referenced : 
mk_abmonoid, 
bool_wf, 
eq_bool_wf, 
btrue_wf, 
bor_wf, 
bfalse_wf, 
bor-assoc, 
equal_wf, 
squash_wf, 
true_wf, 
bor_ff_simp, 
iff_weakening_equal, 
eqtt_to_assert, 
testxxx_lemma, 
bor_tt_simp, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
lambdaEquality, 
hypothesisEquality, 
independent_isectElimination, 
isect_memberFormation, 
sqequalRule, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
axiomEquality, 
because_Cache, 
applyEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
productElimination, 
independent_functionElimination, 
independent_pairFormation, 
independent_pairEquality, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
dependent_functionElimination, 
dependent_pairFormation, 
promote_hyp, 
instantiate, 
cumulativity
Latex:
<\mBbbB{},\mvee{}\msubb{}>  \mmember{}  AbMon
Date html generated:
2017_10_01-AM-08_16_47
Last ObjectModification:
2017_02_28-PM-02_01_49
Theory : groups_1
Home
Index