Nuprl Lemma : bor_ff_simp
∀[u:𝔹]. u ∨bff = u
Proof
Definitions occuring in Statement :
bor: p ∨bq
,
bfalse: ff
,
bool: 𝔹
,
uall: ∀[x:A]. B[x]
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
bor: p ∨bq
,
bool: 𝔹
,
unit: Unit
,
member: t ∈ T
,
it: ⋅
,
btrue: tt
,
ifthenelse: if b then t else f fi
,
bfalse: ff
Lemmas referenced :
btrue_wf,
bfalse_wf,
bool_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
Error :isect_memberFormation_alt,
cut,
sqequalRule,
sqequalHypSubstitution,
unionElimination,
thin,
equalityElimination,
introduction,
extract_by_obid,
hypothesis,
Error :universeIsType
Latex:
\mforall{}[u:\mBbbB{}]. u \mvee{}\msubb{}ff = u
Date html generated:
2019_06_20-AM-11_31_00
Last ObjectModification:
2018_09_26-AM-11_14_52
Theory : bool_1
Home
Index