Nuprl Lemma : set_eq_wf

[p:PosetSig]. (=b ∈ |p| ⟶ |p| ⟶ 𝔹)


Proof




Definitions occuring in Statement :  set_eq: =b set_car: |p| poset_sig: PosetSig bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T poset_sig: PosetSig set_eq: =b set_car: |p| pi1: fst(t) pi2: snd(t)
Lemmas referenced :  poset_sig_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin sqequalRule hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry lemma_by_obid

Latex:
\mforall{}[p:PosetSig].  (=\msubb{}  \mmember{}  |p|  {}\mrightarrow{}  |p|  {}\mrightarrow{}  \mBbbB{})



Date html generated: 2016_05_15-PM-00_03_53
Last ObjectModification: 2015_12_26-PM-11_28_53

Theory : sets_1


Home Index