Nuprl Lemma : mem_wf

s:DSet. ∀a:|s|. ∀bs:|s| List.  (a ∈b bs ∈ 𝔹)


Proof




Definitions occuring in Statement :  mem: a ∈b as list: List bool: 𝔹 all: x:A. B[x] member: t ∈ T dset: DSet set_car: |p|
Definitions unfolded in proof :  mem: a ∈b as all: x:A. B[x] member: t ∈ T subtype_rel: A ⊆B uall: [x:A]. B[x] guard: {T} uimplies: supposing a dset: DSet so_lambda: λ2x.t[x] infix_ap: y bor_mon: <𝔹,∨b> grp_car: |g| pi1: fst(t) so_apply: x[s] abmonoid: AbMon mon: Mon
Lemmas referenced :  mon_for_wf bor_mon_wf iabmonoid_subtype_imon abmonoid_subtype_iabmonoid subtype_rel_transitivity abmonoid_wf iabmonoid_wf imon_wf set_car_wf set_eq_wf bool_wf grp_car_wf list_wf dset_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesis applyEquality instantiate isectElimination independent_isectElimination setElimination rename hypothesisEquality lambdaEquality

Latex:
\mforall{}s:DSet.  \mforall{}a:|s|.  \mforall{}bs:|s|  List.    (a  \mmember{}\msubb{}  bs  \mmember{}  \mBbbB{})



Date html generated: 2016_05_16-AM-07_36_52
Last ObjectModification: 2015_12_28-PM-05_45_08

Theory : list_2


Home Index