Nuprl Lemma : finite_set_wf
∀[s:DSet]. (FiniteSet{s} ∈ Type)
Proof
Definitions occuring in Statement : 
finite_set: FiniteSet{s}
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
, 
dset: DSet
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
finite_set: FiniteSet{s}
, 
all: ∀x:A. B[x]
, 
dset: DSet
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
so_apply: x[s]
, 
prop: ℙ
Lemmas referenced : 
mset_wf, 
all_wf, 
set_car_wf, 
le_wf, 
mset_count_wf, 
nat_wf, 
dset_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
setEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
isectElimination, 
setElimination, 
rename, 
lambdaEquality, 
applyEquality, 
natural_numberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[s:DSet].  (FiniteSet\{s\}  \mmember{}  Type)
Date html generated:
2016_05_16-AM-07_46_29
Last ObjectModification:
2015_12_28-PM-06_04_02
Theory : mset
Home
Index