Nuprl Lemma : finite_set_wf

[s:DSet]. (FiniteSet{s} ∈ Type)


Proof




Definitions occuring in Statement :  finite_set: FiniteSet{s} uall: [x:A]. B[x] member: t ∈ T universe: Type dset: DSet
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T finite_set: FiniteSet{s} all: x:A. B[x] dset: DSet so_lambda: λ2x.t[x] subtype_rel: A ⊆B nat: so_apply: x[s] prop:
Lemmas referenced :  mset_wf all_wf set_car_wf le_wf mset_count_wf nat_wf dset_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule setEquality lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis isectElimination setElimination rename lambdaEquality applyEquality natural_numberEquality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[s:DSet].  (FiniteSet\{s\}  \mmember{}  Type)



Date html generated: 2016_05_16-AM-07_46_29
Last ObjectModification: 2015_12_28-PM-06_04_02

Theory : mset


Home Index