Nuprl Lemma : mset_count_wf

s:DSet. ∀x:|s|. ∀a:MSet{s}.  (x #∈ a ∈ ℕ)


Proof




Definitions occuring in Statement :  mset_count: #∈ a mset: MSet{s} nat: all: x:A. B[x] member: t ∈ T dset: DSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] dset: DSet mset: MSet{s} quotient: x,y:A//B[x; y] and: P ∧ Q implies:  Q prop: iff: ⇐⇒ Q guard: {T} mset_count: #∈ a nat: squash: T true: True subtype_rel: A ⊆B uimplies: supposing a rev_implies:  Q
Lemmas referenced :  mset_wf set_car_wf dset_wf nat_wf list_wf permr_wf equal_wf equal-wf-base permr_iff_eq_counts_a count_bounds squash_wf true_wf count_wf iff_weakening_equal le_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalHypSubstitution hypothesis introduction extract_by_obid dependent_functionElimination thin hypothesisEquality isectElimination setElimination rename pointwiseFunctionalityForEquality sqequalRule pertypeElimination productElimination equalityTransitivity equalitySymmetry because_Cache independent_functionElimination productEquality dependent_set_memberEquality applyEquality lambdaEquality imageElimination universeEquality intEquality natural_numberEquality imageMemberEquality baseClosed independent_isectElimination

Latex:
\mforall{}s:DSet.  \mforall{}x:|s|.  \mforall{}a:MSet\{s\}.    (x  \#\mmember{}  a  \mmember{}  \mBbbN{})



Date html generated: 2017_10_01-AM-09_59_00
Last ObjectModification: 2017_03_03-PM-01_00_00

Theory : mset


Home Index