Nuprl Lemma : permr_iff_eq_counts_a

s:DSet. ∀as,bs:|s| List.  (as ≡(|s|) bs ⇐⇒ {∀x:|s|. ((x #∈ as) (x #∈ bs) ∈ ℤ)})


Proof




Definitions occuring in Statement :  count: #∈ as permr: as ≡(T) bs list: List guard: {T} all: x:A. B[x] iff: ⇐⇒ Q int: equal: t ∈ T dset: DSet set_car: |p|
Definitions unfolded in proof :  guard: {T}
Lemmas referenced :  permr_iff_eq_counts
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lemma_by_obid

Latex:
\mforall{}s:DSet.  \mforall{}as,bs:|s|  List.    (as  \mequiv{}(|s|)  bs  \mLeftarrow{}{}\mRightarrow{}  \{\mforall{}x:|s|.  ((x  \#\mmember{}  as)  =  (x  \#\mmember{}  bs))\})



Date html generated: 2016_05_16-AM-07_39_50
Last ObjectModification: 2015_12_28-PM-05_43_06

Theory : list_2


Home Index