Nuprl Lemma : permr_iff_eq_counts

s:DSet. ∀as,bs:|s| List.  (as ≡(|s|) bs ⇐⇒ ∀x:|s|. ((x #∈ as) (x #∈ bs) ∈ ℤ))


Proof




Definitions occuring in Statement :  count: #∈ as permr: as ≡(T) bs list: List all: x:A. B[x] iff: ⇐⇒ Q int: equal: t ∈ T dset: DSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q member: t ∈ T uall: [x:A]. B[x] dset: DSet implies:  Q prop: true: True squash: T subtype_rel: A ⊆B uimplies: supposing a guard: {T} rev_implies:  Q nat: false: False ge: i ≥  not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top or: P ∨ Q bpermr: as ≡b bs ycomb: Y so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] cons: [a b] le: A ≤ B less_than': less_than'(a;b) colength: colength(L) nil: [] it: so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) assert: b ifthenelse: if then else fi  btrue: tt bfalse: ff infix_ap: y b2i: b2i(b) uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) cand: c∧ B gt: i > j
Lemmas referenced :  list_wf set_car_wf dset_wf permr_wf count_wf equal_wf squash_wf true_wf istype-universe count_functionality subtype_rel_self iff_weakening_equal nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf assert_witness intformeq_wf int_formula_prop_eq_lemma list-cases count_nil_lemma list_ind_nil_lemma int_subtype_base product_subtype_list colength-cons-not-zero colength_wf_list istype-false le_wf bpermr_wf subtract-1-ge-0 subtype_base_sq set_subtype_base spread_cons_lemma decidable__equal_int subtract_wf intformnot_wf itermSubtract_wf itermAdd_wf int_formula_prop_not_lemma int_term_value_subtract_lemma int_term_value_add_lemma decidable__le count_cons_lemma list_ind_cons_lemma b2i_wf infix_ap_wf bool_wf set_eq_wf nat_wf assert_of_bpermr null_nil_lemma null_cons_lemma add_functionality_wrt_eq btrue_wf dset_eq_refl non_neg_length count_bounds assert_of_band mem_wf remove1_wf assert_wf mem_iff_count_nzero decidable__lt cons_remove1_permr cons_wf permr_inversion add-is-int-iff false_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt independent_pairFormation inhabitedIsType hypothesisEquality universeIsType cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesis dependent_functionElimination intEquality because_Cache natural_numberEquality applyEquality lambdaEquality_alt imageElimination equalityTransitivity equalitySymmetry universeEquality independent_functionElimination sqequalRule imageMemberEquality baseClosed instantiate independent_isectElimination productElimination intWeakElimination approximateComputation dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination applyLambdaEquality functionIsTypeImplies unionElimination functionIsType equalityIsType4 promote_hyp hypothesis_subsumption equalityIsType1 dependent_set_memberEquality_alt baseApply closedConclusion addEquality pointwiseFunctionality

Latex:
\mforall{}s:DSet.  \mforall{}as,bs:|s|  List.    (as  \mequiv{}(|s|)  bs  \mLeftarrow{}{}\mRightarrow{}  \mforall{}x:|s|.  ((x  \#\mmember{}  as)  =  (x  \#\mmember{}  bs)))



Date html generated: 2019_10_16-PM-01_04_06
Last ObjectModification: 2018_10_08-AM-11_39_44

Theory : list_2


Home Index