Nuprl Lemma : count_functionality

s:DSet. ∀a,a':|s|. ∀bs,bs':|s| List.  ((a a' ∈ |s|)  (bs ≡(|s|) bs')  ((a #∈ bs) (a' #∈ bs') ∈ ℤ))


Proof




Definitions occuring in Statement :  count: #∈ as permr: as ≡(T) bs list: List all: x:A. B[x] implies:  Q int: equal: t ∈ T dset: DSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q count: #∈ as member: t ∈ T prop: uall: [x:A]. B[x] dset: DSet subtype_rel: A ⊆B abgrp: AbGrp grp: Group{i} mon: Mon iabmonoid: IAbMonoid imon: IMonoid so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a infix_ap: y grp_car: |g| pi1: fst(t) int_add_grp: <ℤ+> guard: {T} true: True squash: T iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q
Lemmas referenced :  permr_wf set_car_wf equal_wf int_add_grp_wf subtype_rel_sets grp_sig_wf monoid_p_wf grp_car_wf grp_op_wf grp_id_wf inverse_wf grp_inv_wf comm_wf set_wf b2i_wf set_eq_wf subtype_rel_self mon_subtype_grp_sig grp_subtype_mon abgrp_subtype_grp subtype_rel_transitivity abgrp_wf grp_wf mon_wf mem_f_wf mon_for_wf squash_wf true_wf mon_for_functionality_wrt_permr bool_wf iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination setElimination rename because_Cache hypothesisEquality intEquality applyEquality sqequalRule instantiate setEquality cumulativity lambdaEquality independent_isectElimination natural_numberEquality imageElimination equalityTransitivity equalitySymmetry universeEquality independent_functionElimination imageMemberEquality baseClosed productElimination

Latex:
\mforall{}s:DSet.  \mforall{}a,a':|s|.  \mforall{}bs,bs':|s|  List.    ((a  =  a')  {}\mRightarrow{}  (bs  \mequiv{}(|s|)  bs')  {}\mRightarrow{}  ((a  \#\mmember{}  bs)  =  (a'  \#\mmember{}  bs')))



Date html generated: 2018_05_22-AM-07_45_20
Last ObjectModification: 2018_05_19-AM-08_32_28

Theory : list_2


Home Index