Nuprl Lemma : count_functionality
∀s:DSet. ∀a,a':|s|. ∀bs,bs':|s| List.  ((a = a' ∈ |s|) 
⇒ (bs ≡(|s|) bs') 
⇒ ((a #∈ bs) = (a' #∈ bs') ∈ ℤ))
Proof
Definitions occuring in Statement : 
count: a #∈ as
, 
permr: as ≡(T) bs
, 
list: T List
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
int: ℤ
, 
equal: s = t ∈ T
, 
dset: DSet
, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
count: a #∈ as
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
dset: DSet
, 
subtype_rel: A ⊆r B
, 
abgrp: AbGrp
, 
grp: Group{i}
, 
mon: Mon
, 
iabmonoid: IAbMonoid
, 
imon: IMonoid
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
infix_ap: x f y
, 
grp_car: |g|
, 
pi1: fst(t)
, 
int_add_grp: <ℤ+>
, 
guard: {T}
, 
true: True
, 
squash: ↓T
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
permr_wf, 
set_car_wf, 
equal_wf, 
int_add_grp_wf, 
subtype_rel_sets, 
grp_sig_wf, 
monoid_p_wf, 
grp_car_wf, 
grp_op_wf, 
grp_id_wf, 
inverse_wf, 
grp_inv_wf, 
comm_wf, 
set_wf, 
b2i_wf, 
set_eq_wf, 
subtype_rel_self, 
mon_subtype_grp_sig, 
grp_subtype_mon, 
abgrp_subtype_grp, 
subtype_rel_transitivity, 
abgrp_wf, 
grp_wf, 
mon_wf, 
mem_f_wf, 
mon_for_wf, 
squash_wf, 
true_wf, 
mon_for_functionality_wrt_permr, 
bool_wf, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
hypothesis, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isectElimination, 
setElimination, 
rename, 
because_Cache, 
hypothesisEquality, 
intEquality, 
applyEquality, 
sqequalRule, 
instantiate, 
setEquality, 
cumulativity, 
lambdaEquality, 
independent_isectElimination, 
natural_numberEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
productElimination
Latex:
\mforall{}s:DSet.  \mforall{}a,a':|s|.  \mforall{}bs,bs':|s|  List.    ((a  =  a')  {}\mRightarrow{}  (bs  \mequiv{}(|s|)  bs')  {}\mRightarrow{}  ((a  \#\mmember{}  bs)  =  (a'  \#\mmember{}  bs')))
Date html generated:
2018_05_22-AM-07_45_20
Last ObjectModification:
2018_05_19-AM-08_32_28
Theory : list_2
Home
Index