Nuprl Lemma : b2i_wf

[b:𝔹]. (b2i(b) ∈ ℤ)


Proof




Definitions occuring in Statement :  b2i: b2i(b) bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T b2i: b2i(b) all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  bfalse: ff prop:
Lemmas referenced :  bool_wf eqtt_to_assert uiff_transitivity equal-wf-T-base assert_wf bnot_wf not_wf eqff_to_assert assert_of_bnot equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule hypothesisEquality thin extract_by_obid hypothesis lambdaFormation sqequalHypSubstitution unionElimination equalityElimination isectElimination because_Cache productElimination independent_isectElimination natural_numberEquality baseClosed independent_functionElimination equalityTransitivity equalitySymmetry dependent_functionElimination axiomEquality Error :universeIsType

Latex:
\mforall{}[b:\mBbbB{}].  (b2i(b)  \mmember{}  \mBbbZ{})



Date html generated: 2019_06_20-AM-11_31_10
Last ObjectModification: 2018_09_26-AM-11_29_28

Theory : bool_1


Home Index