Nuprl Lemma : dset_eq_refl
∀[s:DSet]. ∀[a:|s|].  a (=b) a = tt
Proof
Definitions occuring in Statement : 
dset: DSet
, 
set_eq: =b
, 
set_car: |p|
, 
btrue: tt
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
infix_ap: x f y
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
infix_ap: x f y
, 
dset: DSet
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
eqtt_to_assert, 
set_eq_wf, 
set_car_wf, 
dset_wf, 
assert_of_dset_eq
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
applyEquality, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
productElimination, 
independent_isectElimination, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
because_Cache
Latex:
\mforall{}[s:DSet].  \mforall{}[a:|s|].    a  (=\msubb{})  a  =  tt
Date html generated:
2016_05_15-PM-00_04_05
Last ObjectModification:
2015_12_26-PM-11_28_35
Theory : sets_1
Home
Index