Nuprl Lemma : dset_eq_refl

[s:DSet]. ∀[a:|s|].  (=btt


Proof




Definitions occuring in Statement :  dset: DSet set_eq: =b set_car: |p| btrue: tt bool: 𝔹 uall: [x:A]. B[x] infix_ap: y equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T infix_ap: y dset: DSet uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  eqtt_to_assert set_eq_wf set_car_wf dset_wf assert_of_dset_eq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin applyEquality setElimination rename hypothesisEquality hypothesis productElimination independent_isectElimination sqequalRule isect_memberEquality axiomEquality because_Cache

Latex:
\mforall{}[s:DSet].  \mforall{}[a:|s|].    a  (=\msubb{})  a  =  tt



Date html generated: 2016_05_15-PM-00_04_05
Last ObjectModification: 2015_12_26-PM-11_28_35

Theory : sets_1


Home Index