Nuprl Lemma : count_cons_lemma

bs,b,a,s:Top.  (a #∈ [b bs] b2i(b (=ba) (a #∈ bs))


Proof




Definitions occuring in Statement :  count: #∈ as cons: [a b] b2i: b2i(b) top: Top infix_ap: y all: x:A. B[x] add: m sqequal: t set_eq: =b
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T count: #∈ as so_lambda: λ2x.t[x] top: Top so_apply: x[s] int_add_grp: <ℤ+> grp_op: * pi2: snd(t) pi1: fst(t) infix_ap: y
Lemmas referenced :  top_wf mon_for_cons_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis lemma_by_obid sqequalRule sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality

Latex:
\mforall{}bs,b,a,s:Top.    (a  \#\mmember{}  [b  /  bs]  \msim{}  b2i(b  (=\msubb{})  a)  +  (a  \#\mmember{}  bs))



Date html generated: 2016_05_16-AM-07_39_28
Last ObjectModification: 2015_12_28-PM-05_43_29

Theory : list_2


Home Index