Nuprl Lemma : count_cons_lemma
∀bs,b,a,s:Top.  (a #∈ [b / bs] ~ b2i(b (=b) a) + (a #∈ bs))
Proof
Definitions occuring in Statement : 
count: a #∈ as
, 
cons: [a / b]
, 
b2i: b2i(b)
, 
top: Top
, 
infix_ap: x f y
, 
all: ∀x:A. B[x]
, 
add: n + m
, 
sqequal: s ~ t
, 
set_eq: =b
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
count: a #∈ as
, 
so_lambda: λ2x.t[x]
, 
top: Top
, 
so_apply: x[s]
, 
int_add_grp: <ℤ+>
, 
grp_op: *
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
infix_ap: x f y
Lemmas referenced : 
top_wf, 
mon_for_cons_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
hypothesis, 
lemma_by_obid, 
sqequalRule, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}bs,b,a,s:Top.    (a  \#\mmember{}  [b  /  bs]  \msim{}  b2i(b  (=\msubb{})  a)  +  (a  \#\mmember{}  bs))
Date html generated:
2016_05_16-AM-07_39_28
Last ObjectModification:
2015_12_28-PM-05_43_29
Theory : list_2
Home
Index