Nuprl Lemma : cons_remove1_permr

s:DSet. ∀a:|s|. ∀bs:|s| List.  ((↑(a ∈b bs))  ([a (bs a)] ≡(|s|) bs))


Proof




Definitions occuring in Statement :  remove1: as a mem: a ∈b as permr: as ≡(T) bs cons: [a b] list: List assert: b all: x:A. B[x] implies:  Q dset: DSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] prop: dset: DSet so_lambda: λ2x.t[x] subtype_rel: A ⊆B so_apply: x[s] top: Top assert: b ifthenelse: if then else fi  bfalse: ff false: False infix_ap: y bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a iff: ⇐⇒ Q not: ¬A rev_implies:  Q bor: p ∨bq
Lemmas referenced :  assert_wf mem_wf list_wf set_car_wf dset_wf list_induction permr_wf cons_wf remove1_wf mem_nil_lemma istype-void remove1_nil_lemma mem_cons_lemma remove1_cons_lemma set_eq_wf uiff_transitivity equal-wf-T-base bool_wf equal_wf eqtt_to_assert assert_of_dset_eq testxxx_lemma true_wf iff_transitivity bnot_wf not_wf iff_weakening_uiff eqff_to_assert assert_of_bnot permr_weakening permr_functionality_wrt_permr cons_functionality_wrt_permr permr_inversion hd_two_swap_permr
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt universeIsType cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin dependent_functionElimination hypothesisEquality hypothesis setElimination rename sqequalRule lambdaEquality_alt functionEquality applyEquality because_Cache independent_functionElimination isect_memberEquality_alt voidElimination functionIsType inhabitedIsType unionElimination equalityElimination equalityTransitivity equalitySymmetry baseClosed productElimination independent_isectElimination independent_pairFormation equalityIsType1 hyp_replacement applyLambdaEquality

Latex:
\mforall{}s:DSet.  \mforall{}a:|s|.  \mforall{}bs:|s|  List.    ((\muparrow{}(a  \mmember{}\msubb{}  bs))  {}\mRightarrow{}  ([a  /  (bs  \mbackslash{}  a)]  \mequiv{}(|s|)  bs))



Date html generated: 2019_10_16-PM-01_03_46
Last ObjectModification: 2018_10_08-AM-11_15_18

Theory : list_2


Home Index