Nuprl Lemma : cons_remove1_permr
∀s:DSet. ∀a:|s|. ∀bs:|s| List.  ((↑(a ∈b bs)) 
⇒ ([a / (bs \ a)] ≡(|s|) bs))
Proof
Definitions occuring in Statement : 
remove1: as \ a
, 
mem: a ∈b as
, 
permr: as ≡(T) bs
, 
cons: [a / b]
, 
list: T List
, 
assert: ↑b
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
dset: DSet
, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
dset: DSet
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
top: Top
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
false: False
, 
infix_ap: x f y
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
bor: p ∨bq
Lemmas referenced : 
assert_wf, 
mem_wf, 
list_wf, 
set_car_wf, 
dset_wf, 
list_induction, 
permr_wf, 
cons_wf, 
remove1_wf, 
mem_nil_lemma, 
istype-void, 
remove1_nil_lemma, 
mem_cons_lemma, 
remove1_cons_lemma, 
set_eq_wf, 
uiff_transitivity, 
equal-wf-T-base, 
bool_wf, 
equal_wf, 
eqtt_to_assert, 
assert_of_dset_eq, 
testxxx_lemma, 
true_wf, 
iff_transitivity, 
bnot_wf, 
not_wf, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
permr_weakening, 
permr_functionality_wrt_permr, 
cons_functionality_wrt_permr, 
permr_inversion, 
hd_two_swap_permr
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
dependent_functionElimination, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
sqequalRule, 
lambdaEquality_alt, 
functionEquality, 
applyEquality, 
because_Cache, 
independent_functionElimination, 
isect_memberEquality_alt, 
voidElimination, 
functionIsType, 
inhabitedIsType, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
baseClosed, 
productElimination, 
independent_isectElimination, 
independent_pairFormation, 
equalityIsType1, 
hyp_replacement, 
applyLambdaEquality
Latex:
\mforall{}s:DSet.  \mforall{}a:|s|.  \mforall{}bs:|s|  List.    ((\muparrow{}(a  \mmember{}\msubb{}  bs))  {}\mRightarrow{}  ([a  /  (bs  \mbackslash{}  a)]  \mequiv{}(|s|)  bs))
Date html generated:
2019_10_16-PM-01_03_46
Last ObjectModification:
2018_10_08-AM-11_15_18
Theory : list_2
Home
Index