Nuprl Lemma : permr_functionality_wrt_permr

T,T':Type. ∀as:T List. ∀as':T' List. ∀bs:T List. ∀bs':T' List.
  ((T T' ∈ Type)  (as ≡(T) as')  (bs ≡(T) bs')  (as ≡(T) bs ⇐⇒ as' ≡(T') bs'))


Proof




Definitions occuring in Statement :  permr: as ≡(T) bs list: List all: x:A. B[x] iff: ⇐⇒ Q implies:  Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q member: t ∈ T prop: rev_implies:  Q subtype_rel: A ⊆B uall: [x:A]. B[x] squash: T true: True uimplies: supposing a guard: {T}
Lemmas referenced :  permr_wf subtype_rel_self list_wf subtype_rel_wf equal_wf squash_wf true_wf iff_weakening_equal permr_inversion permr_transitivity
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin cumulativity hypothesisEquality hypothesis applyEquality equalitySymmetry isectElimination hyp_replacement applyLambdaEquality sqequalRule instantiate universeEquality lambdaEquality imageElimination equalityTransitivity natural_numberEquality imageMemberEquality baseClosed independent_isectElimination productElimination independent_functionElimination because_Cache

Latex:
\mforall{}T,T':Type.  \mforall{}as:T  List.  \mforall{}as':T'  List.  \mforall{}bs:T  List.  \mforall{}bs':T'  List.
    ((T  =  T')  {}\mRightarrow{}  (as  \mequiv{}(T)  as')  {}\mRightarrow{}  (bs  \mequiv{}(T)  bs')  {}\mRightarrow{}  (as  \mequiv{}(T)  bs  \mLeftarrow{}{}\mRightarrow{}  as'  \mequiv{}(T')  bs'))



Date html generated: 2017_01_09-AM-08_35_14
Last ObjectModification: 2016_07_12-PM-01_10_23

Theory : perms_2


Home Index