Nuprl Lemma : remove1_cons_lemma

bs,b,a,s:Top.  ([b bs] if (=bthen bs else [b (bs a)] fi )


Proof




Definitions occuring in Statement :  remove1: as a cons: [a b] ifthenelse: if then else fi  top: Top infix_ap: y all: x:A. B[x] sqequal: t set_eq: =b
Definitions unfolded in proof :  all: x:A. B[x] remove1: as a ycomb: Y so_lambda: so_lambda(x,y,z.t[x; y; z]) member: t ∈ T top: Top so_apply: x[s1;s2;s3]
Lemmas referenced :  list_ind_cons_lemma top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalRule lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis

Latex:
\mforall{}bs,b,a,s:Top.    ([b  /  bs]  \mbackslash{}  a  \msim{}  if  b  (=\msubb{})  a  then  bs  else  [b  /  (bs  \mbackslash{}  a)]  fi  )



Date html generated: 2016_05_16-AM-07_38_53
Last ObjectModification: 2015_12_28-PM-05_44_07

Theory : list_2


Home Index