Nuprl Lemma : remove1_cons_lemma
∀bs,b,a,s:Top.  ([b / bs] \ a ~ if b (=b) a then bs else [b / (bs \ a)] fi )
Proof
Definitions occuring in Statement : 
remove1: as \ a
, 
cons: [a / b]
, 
ifthenelse: if b then t else f fi 
, 
top: Top
, 
infix_ap: x f y
, 
all: ∀x:A. B[x]
, 
sqequal: s ~ t
, 
set_eq: =b
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
remove1: as \ a
, 
ycomb: Y
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
member: t ∈ T
, 
top: Top
, 
so_apply: x[s1;s2;s3]
Lemmas referenced : 
list_ind_cons_lemma, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis
Latex:
\mforall{}bs,b,a,s:Top.    ([b  /  bs]  \mbackslash{}  a  \msim{}  if  b  (=\msubb{})  a  then  bs  else  [b  /  (bs  \mbackslash{}  a)]  fi  )
Date html generated:
2016_05_16-AM-07_38_53
Last ObjectModification:
2015_12_28-PM-05_44_07
Theory : list_2
Home
Index