Nuprl Lemma : mem_cons_lemma

bs,b,a,s:Top.  (a ∈b [b bs] (b (=ba) ∨b(a ∈b bs))


Proof




Definitions occuring in Statement :  mem: a ∈b as cons: [a b] bor: p ∨bq top: Top infix_ap: y all: x:A. B[x] sqequal: t set_eq: =b
Definitions unfolded in proof :  all: x:A. B[x] mem: a ∈b as mon_for: For{g} x ∈ as. f[x] for: For{T,op,id} x ∈ as. f[x] bor_mon: <𝔹,∨b> grp_op: * pi2: snd(t) pi1: fst(t) grp_id: e member: t ∈ T top: Top tlambda: λx:T. b[x]
Lemmas referenced :  map_cons_lemma reduce_cons_lemma top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalRule lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis

Latex:
\mforall{}bs,b,a,s:Top.    (a  \mmember{}\msubb{}  [b  /  bs]  \msim{}  (b  (=\msubb{})  a)  \mvee{}\msubb{}(a  \mmember{}\msubb{}  bs))



Date html generated: 2016_05_16-AM-07_36_57
Last ObjectModification: 2015_12_28-PM-05_45_21

Theory : list_2


Home Index